Suppr超能文献

在标签不足的情况下改进基于电子健康记录的临床预测模型:基于网络的生成对抗半监督方法。

Improving an Electronic Health Record-Based Clinical Prediction Model Under Label Deficiency: Network-Based Generative Adversarial Semisupervised Approach.

作者信息

Li Runze, Tian Yu, Shen Zhuyi, Li Jin, Li Jun, Ding Kefeng, Li Jingsong

机构信息

College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.

Institute for Artificial Intelligence in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China.

出版信息

JMIR Med Inform. 2023 Jun 13;11:e47862. doi: 10.2196/47862.

Abstract

BACKGROUND

Observational biomedical studies facilitate a new strategy for large-scale electronic health record (EHR) utilization to support precision medicine. However, data label inaccessibility is an increasingly important issue in clinical prediction, despite the use of synthetic and semisupervised learning from data. Little research has aimed to uncover the underlying graphical structure of EHRs.

OBJECTIVE

A network-based generative adversarial semisupervised method is proposed. The objective is to train clinical prediction models on label-deficient EHRs to achieve comparable learning performance to supervised methods.

METHODS

Three public data sets and one colorectal cancer data set gathered from the Second Affiliated Hospital of Zhejiang University were selected as benchmarks. The proposed models were trained on 5% to 25% labeled data and evaluated on classification metrics against conventional semisupervised and supervised methods. The data quality, model security, and memory scalability were also evaluated.

RESULTS

The proposed method for semisupervised classification outperforms related semisupervised methods under the same setup, with the average area under the receiver operating characteristics curve (AUC) reaching 0.945, 0.673, 0.611, and 0.588 for the four data sets, respectively, followed by graph-based semisupervised learning (0.450, 0.454, 0.425, and 0.5676, respectively) and label propagation (0.475,0.344, 0.440, and 0.477, respectively). The average classification AUCs with 10% labeled data were 0.929, 0.719, 0.652, and 0.650, respectively, comparable to that of the supervised learning methods logistic regression (0.601, 0.670, 0.731, and 0.710, respectively), support vector machines (0.733, 0.720, 0.720, and 0.721, respectively), and random forests (0.982, 0.750, 0.758, and 0.740, respectively). The concerns regarding the secondary use of data and data security are alleviated by realistic data synthesis and robust privacy preservation.

CONCLUSIONS

Training clinical prediction models on label-deficient EHRs is indispensable in data-driven research. The proposed method has great potential to exploit the intrinsic structure of EHRs and achieve comparable learning performance to supervised methods.

摘要

背景

观察性生物医学研究推动了一种利用大规模电子健康记录(EHR)来支持精准医学的新策略。然而,尽管采用了从数据中进行合成和半监督学习的方法,但在临床预测中,数据标签难以获取仍是一个日益重要的问题。很少有研究旨在揭示电子健康记录的潜在图形结构。

目的

提出一种基于网络的生成对抗半监督方法。目标是在标签缺失的电子健康记录上训练临床预测模型,以实现与监督方法相当的学习性能。

方法

选择三个公共数据集和一个从浙江大学医学院附属第二医院收集的结直肠癌数据集作为基准。所提出的模型在5%至25%的标记数据上进行训练,并根据分类指标与传统半监督和监督方法进行评估。还评估了数据质量、模型安全性和内存可扩展性。

结果

在相同设置下,所提出的半监督分类方法优于相关的半监督方法,四个数据集的受试者操作特征曲线下面积(AUC)平均值分别达到0.945、0.673、0.611和0.588,其次是基于图的半监督学习(分别为0.450、0.454、0.425和0.5676)和标签传播(分别为0.475、0.344、0.440和0.477)。使用10%标记数据时的平均分类AUC分别为0.929、0.719、0.652和0.650,与监督学习方法逻辑回归(分别为0.601、0.670、0.731和0.710)、支持向量机(分别为0.733、0.720、0.720和0.721)以及随机森林(分别为0.982、0.750、0.758和0.740)相当。现实的数据合成和强大的隐私保护减轻了对数据二次使用和数据安全的担忧。

结论

在标签缺失的电子健康记录上训练临床预测模型在数据驱动的研究中不可或缺。所提出的方法具有很大潜力来挖掘电子健康记录的内在结构,并实现与监督方法相当的学习性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ed/10337516/b33e97318689/medinform_v11i1e47862_fig1.jpg

相似文献

2
Treatment effect prediction with adversarial deep learning using electronic health records.
BMC Med Inform Decis Mak. 2020 Dec 14;20(Suppl 4):139. doi: 10.1186/s12911-020-01151-9.
3
Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification.
IEEE Trans Cybern. 2020 Jul;50(7):3318-3329. doi: 10.1109/TCYB.2019.2915094. Epub 2019 May 30.
5
A reciprocal learning strategy for semisupervised medical image segmentation.
Med Phys. 2023 Jan;50(1):163-177. doi: 10.1002/mp.15923. Epub 2022 Aug 23.
6
Semisupervised Semantic Segmentation by Improving Prediction Confidence.
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4991-5003. doi: 10.1109/TNNLS.2021.3066850. Epub 2022 Aug 31.
7
Semisupervised Training of Deep Generative Models for High-Dimensional Anomaly Detection.
IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2444-2453. doi: 10.1109/TNNLS.2021.3095150. Epub 2022 Jun 1.
8
Robust Semisupervised Deep Generative Model Under Compound Noise.
IEEE Trans Neural Netw Learn Syst. 2023 Mar;34(3):1179-1193. doi: 10.1109/TNNLS.2021.3105080. Epub 2023 Feb 28.
9
A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
Artif Intell Med. 2020 Mar;103:101814. doi: 10.1016/j.artmed.2020.101814. Epub 2020 Feb 5.
10
Scaling up graph-based semisupervised learning via prototype vector machines.
IEEE Trans Neural Netw Learn Syst. 2015 Mar;26(3):444-57. doi: 10.1109/TNNLS.2014.2315526.

引用本文的文献

1
Role of Generative Artificial Intelligence in Personalized Medicine: A Systematic Review.
Cureus. 2025 Apr 15;17(4):e82310. doi: 10.7759/cureus.82310. eCollection 2025 Apr.
2
A review on generative AI models for synthetic medical text, time series, and longitudinal data.
NPJ Digit Med. 2025 May 15;8(1):281. doi: 10.1038/s41746-024-01409-w.

本文引用的文献

1
A long-term clinical trial on the efficacy and safety profile of doxofylline in Asthma: The LESDA study.
Pulm Pharmacol Ther. 2020 Feb;60:101883. doi: 10.1016/j.pupt.2019.101883. Epub 2019 Dec 26.
2
Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models.
Annu Rev Biomed Data Sci. 2018 Jul;1:53-68. doi: 10.1146/annurev-biodatasci-080917-013315. Epub 2018 May 23.
3
Semi-supervised encoding for outlier detection in clinical observation data.
Comput Methods Programs Biomed. 2019 Nov;181:104830. doi: 10.1016/j.cmpb.2019.01.002. Epub 2019 Jan 12.
4
Synthesizing electronic health records using improved generative adversarial networks.
J Am Med Inform Assoc. 2019 Mar 1;26(3):228-241. doi: 10.1093/jamia/ocy142.
6
Analysis of randomised trials with long-term follow-up.
BMC Med Res Methodol. 2018 May 29;18(1):48. doi: 10.1186/s12874-018-0499-5.
7
Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression.
Int J Med Inform. 2018 Jul;115:1-9. doi: 10.1016/j.ijmedinf.2018.04.001. Epub 2018 Apr 9.
9
Semi-supervised learning of the electronic health record for phenotype stratification.
J Biomed Inform. 2016 Dec;64:168-178. doi: 10.1016/j.jbi.2016.10.007. Epub 2016 Oct 12.
10
Identification of type 2 diabetes subgroups through topological analysis of patient similarity.
Sci Transl Med. 2015 Oct 28;7(311):311ra174. doi: 10.1126/scitranslmed.aaa9364.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验