Suppr超能文献

基于深度学习的沿海环境下混凝土中氯离子随时间渗透的预测

Deep learning-based prediction for time-dependent chloride penetration in concrete exposed to coastal environment.

作者信息

Wu Lingjie, Wang Weiqiang, Jiang Chenchi

机构信息

College of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, China.

Key Laboratory of Engineering and Technology for Soft Soil Foundation and Tideland Reclamation of Zhejiang Province, Wenzhou 325035, China.

出版信息

Heliyon. 2023 Jun 1;9(6):e16869. doi: 10.1016/j.heliyon.2023.e16869. eCollection 2023 Jun.

Abstract

The application of deep learning methods in civil engineering has gained significant attention, but its usage in studying chloride penetration in concrete is still in its early stages. This research paper focuses on predicting and analyzing chloride profiles using deep learning methods based on measured data from concrete exposed for 600 days in a coastal environment. The study reveals that Bidirectional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN) models exhibit rapid convergence during the training stage, but fail to achieve satisfactory accuracy when predicting chloride profiles. Additionally, the Gate Recurrent Unit (GRU) model proves to be more efficient than the Long Short-Term Memory (LSTM) model, but its prediction accuracy falls short compared to LSTM for further predictions. However, by optimizing the LSTM model through parameters such as the dropout layer, hidden units, iteration times, and initial learning rate, significant improvements are achieved. The mean absolute error (MAE), determinable coefficient (), root mean square error (RMSE), and mean absolute percentage error (MAPE) values are reported as 0.0271, 0.9752, 0.0357, and 5.41%, respectively. Furthermore, the study successfully predicts desirable chloride profiles of concrete specimens at 720 days using the optimized LSTM model.

摘要

深度学习方法在土木工程中的应用已受到广泛关注,但其在研究混凝土中氯离子渗透方面的应用仍处于早期阶段。本研究论文基于在沿海环境中暴露600天的混凝土实测数据,重点探讨使用深度学习方法预测和分析氯离子分布。研究表明,双向长短期记忆(Bi-LSTM)和卷积神经网络(CNN)模型在训练阶段收敛迅速,但在预测氯离子分布时未能达到令人满意的精度。此外,门控循环单元(GRU)模型被证明比长短期记忆(LSTM)模型更高效,但其预测精度在进一步预测时低于LSTM。然而,通过对LSTM模型的参数(如随机失活层、隐藏单元、迭代次数和初始学习率)进行优化,取得了显著改进。平均绝对误差(MAE)、决定系数()、均方根误差(RMSE)和平均绝对百分比误差(MAPE)值分别报告为0.0271、0.9752、0.0357和5.41%。此外,该研究使用优化后的LSTM模型成功预测了混凝土试件在720天时的理想氯离子分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/364f/10258446/5686be80c785/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验