Suppr超能文献

应用联合图嵌入研究容积数据中的阿尔茨海默病神经退行性变模式。

Applying Joint Graph Embedding to Study Alzheimer's Neurodegeneration Patterns in Volumetric Data.

机构信息

Departments of Computer Science and Computational Medicine, University of California, Los Angeles, USA.

Departments of Computational Medicine and Neurology, University of California, Los Angeles, USA.

出版信息

Neuroinformatics. 2023 Jul;21(3):601-614. doi: 10.1007/s12021-023-09634-6. Epub 2023 Jun 14.

Abstract

Neurodegeneration measured through volumetry in MRI is recognized as a potential Alzheimer's Disease (AD) biomarker, but its utility is limited by lack of specificity. Quantifying spatial patterns of neurodegeneration on a whole brain scale rather than locally may help address this. In this work, we turn to network based analyses and extend a graph embedding algorithm to study morphometric connectivity from volume-change correlations measured with structural MRI on the timescale of years. We model our data with the multiple random eigengraphs framework, as well as modify and implement a multigraph embedding algorithm proposed earlier to estimate a low dimensional embedding of the networks. Our version of the algorithm guarantees meaningful finite-sample results and estimates maximum likelihood edge probabilities from population-specific network modes and subject-specific loadings. Furthermore, we propose and implement a novel statistical testing procedure to analyze group differences after accounting for confounders and locate significant structures during AD neurodegeneration. Family-wise error rate is controlled at 5% using permutation testing on the maximum statistic. We show that results from our analysis reveal networks dominated by known structures associated to AD neurodegeneration, indicating the framework has promise for studying AD. Furthermore, we find network-structure tuples that are not found with traditional methods in the field.

摘要

通过 MRI 中的容积测量来衡量神经退行性变被认为是潜在的阿尔茨海默病(AD)生物标志物,但由于缺乏特异性,其应用受到限制。在全脑范围内而不是局部量化神经退行性变的空间模式可能有助于解决这个问题。在这项工作中,我们转向基于网络的分析,并扩展图嵌入算法,以研究通过结构 MRI 测量的体积变化相关性来研究形态计量学连接。我们使用多个随机特征图框架对我们的数据进行建模,以及修改和实现早期提出的多图嵌入算法,以估计网络的低维嵌入。我们的算法版本保证了有意义的有限样本结果,并从特定于群体的网络模式和特定于主题的负荷中估计最大似然边缘概率。此外,我们提出并实施了一种新的统计测试程序,在考虑混杂因素后分析组间差异,并在 AD 神经退行性变过程中定位显著结构。使用置换检验对最大统计量进行控制,可将组间错误率控制在 5%。我们的分析结果表明,该框架由与 AD 神经退行性变相关的已知结构主导的网络,表明该框架有望用于研究 AD。此外,我们发现了一些网络结构组合,这些组合是该领域传统方法所没有发现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ba/10406695/d4e1927c1270/12021_2023_9634_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验