Suppr超能文献

三方变阻器控制着昆虫自身调节的宿主植物抗性。

A tripartite rheostat controls self-regulated host plant resistance to insects.

机构信息

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.

Hubei Hongshan Laboratory, Wuhan, China.

出版信息

Nature. 2023 Jun;618(7966):799-807. doi: 10.1038/s41586-023-06197-z. Epub 2023 Jun 14.

Abstract

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.

摘要

植物利用受体样激酶和核苷酸结合富含亮氨酸重复受体来赋予宿主植物对草食动物的抗性(HPR)。昆虫与其宿主之间的这种基因对基因相互作用已经提出了超过 50 年。然而,HPR 所依赖的分子和细胞机制一直难以捉摸,因为昆虫非毒性效应子的身份和感应机制仍然未知。在这里,我们鉴定了一种被植物免疫受体感知的昆虫唾液蛋白。褐飞虱(Nilaparvata lugens Stål)的 BPH14 相互作用的唾液蛋白(BISP)在取食期间分泌到水稻(Oryza sativa)中。在易感植物中,BISP 靶向 O. satvia RLCK185(OsRLCK185;以下简称 Os 用于表示与 O. satvia 相关的蛋白质或基因)以抑制基础防御。在抗性植物中,核苷酸结合富含亮氨酸重复受体 BPH14 直接结合 BISP 以激活 HPR。Bph14 介导的免疫的组成型激活对植物的生长和生产力有害。Bph14 介导的 HPR 的精细调节是通过 BISP 和 BPH14 与选择性自噬货物受体 OsNBR1 的直接结合来实现的,该受体将 BISP 递送至 OsATG8 进行降解。因此,自噬控制 BISP 水平。在 Bph14 植物中,当褐飞虱停止取食时,自噬通过下调 HPR 来恢复细胞内稳态。我们鉴定了一种被植物免疫受体感知的昆虫唾液蛋白,并发现了一个三向相互作用系统,为开发高产、抗虫作物提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00a8/10284691/eddc7f291a13/41586_2023_6197_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验