Suppr超能文献

用于人类成体干细胞电监测的 3D 有机生物电子学

3D organic bioelectronics for electrical monitoring of human adult stem cells.

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.

Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006, Vitoria-Gasteiz, Spain.

出版信息

Mater Horiz. 2023 Aug 29;10(9):3589-3600. doi: 10.1039/d3mh00785e.

Abstract

Three-dimensional stem cell models have enabled a fundamental understanding of cues that direct stem cell fate. While sophisticated 3D tissues can be generated, technology that can accurately monitor these complex models in a high-throughput and non-invasive manner is not well adapted. Here we show the development of 3D bioelectronic devices based on the electroactive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-(PEDOT:PSS) and their use for non-invasive, electrical monitoring of stem cell growth. We show that the electrical, mechanical and wetting properties as well as the pore size/architecture of 3D PEDOT:PSS scaffolds can be fine-tuned simply by changing the processing crosslinker additive. We present a comprehensive characterization of both 2D PEDOT:PSS thin films of controlled thicknesses, and 3D porous PEDOT:PSS structures made by the freeze-drying technique. By slicing the bulky scaffolds we generate homogeneous, porous 250 μm thick PEDOT:PSS slices, constituting biocompatible 3D constructs able to support stem cell cultures. These multifunctional slices are attached on indium-tin oxide substrates (ITO) with the help of an electrically active adhesion layer, enabling 3D bioelectronic devices with a characteristic and reproducible, frequency dependent impedance response. This response changes drastically when human adipose derived stem cells (hADSCs) grow within the porous PEDOT:PSS network as revealed by fluorescence microscopy. The increase of cell population within the PEDOT:PSS porous network impedes the charge flow at the interface between PEDOT:PSS and ITO, enabling the interface resistance () to be used as a figure of merit to monitor the proliferation of stem cells. The non-invasive monitoring of stem cell growth allows for the subsequent differentiation 3D stem cell cultures into neuron like cells, as verified by immunofluorescence and RT-qPCR measurements. The strategy of controlling important properties of 3D PEDOT:PSS structures simply by altering processing parameters can be applied for development of a number of stem cell models as well as stem cell differentiation pathways. We believe the results presented here will advance 3D bioelectronic technology for both fundamental understanding of stem cell cultures as well as the development of personalized therapies.

摘要

三维干细胞模型使我们能够深入理解指导干细胞命运的信号。虽然可以生成复杂的 3D 组织,但能够以高通量和非侵入性方式准确监测这些复杂模型的技术还不够完善。在这里,我们展示了基于电活性聚合物聚(3,4-亚乙基二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS)的 3D 生物电子设备的开发及其在干细胞生长的非侵入性、电监测中的应用。我们表明,通过简单地改变加工交联剂添加剂,可以精细调整 3D PEDOT:PSS 支架的电学、力学和润湿性以及孔径/结构。我们全面描述了具有受控厚度的 2D PEDOT:PSS 薄膜和通过冷冻干燥技术制成的 3D 多孔 PEDOT:PSS 结构。通过切割大块支架,我们生成了均匀的、多孔的 250μm 厚的 PEDOT:PSS 切片,构成了能够支持干细胞培养的生物相容的 3D 结构。这些多功能切片在电活性粘附层的帮助下附着在铟锡氧化物(ITO)衬底上,从而产生具有特征且可重复的、频率相关阻抗响应的 3D 生物电子设备。当人脂肪来源干细胞(hADSCs)在多孔 PEDOT:PSS 网络中生长时,这种响应会发生剧烈变化,这一点通过荧光显微镜揭示出来。在 PEDOT:PSS 和 ITO 之间的界面处,PEDOT:PSS 多孔网络中细胞群体的增加会阻碍电荷流动,从而使界面电阻()可作为衡量标准来监测干细胞的增殖。干细胞生长的非侵入性监测允许随后将 3D 干细胞培养物分化为神经元样细胞,这通过免疫荧光和 RT-qPCR 测量得到验证。通过改变处理参数来控制 3D PEDOT:PSS 结构的重要特性的策略可以应用于许多干细胞模型以及干细胞分化途径的开发。我们相信,这里提出的结果将推动 3D 生物电子技术的发展,既可以深入理解干细胞培养物,也可以开发个性化治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5494/10464098/46e0cdfcc44e/d3mh00785e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验