利用人工智能检测和量化肺栓塞:SFR 2022人工智能数据挑战赛
Detection and quantification of pulmonary embolism with artificial intelligence: The SFR 2022 artificial intelligence data challenge.
作者信息
Belkouchi Younes, Lederlin Mathieu, Ben Afia Amira, Fabre Clement, Ferretti Gilbert, De Margerie Constance, Berge Pierre, Liberge Renan, Elbaz Nicolas, Blain Maxime, Brillet Pierre-Yves, Chassagnon Guillaume, Cadour Farah, Caramella Caroline, Hajjam Mostafa El, Boussouar Samia, Hadchiti Joya, Fablet Xavier, Khalil Antoine, Luciani Alain, Cotten Anne, Meder Jean-Francois, Talbot Hugues, Lassau Nathalie
机构信息
OPIS, CentraleSupelec, Inria, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France; Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France.
Department of Radiology, CHU Rennes, 35000 Rennes, France.
出版信息
Diagn Interv Imaging. 2023 Oct;104(10):485-489. doi: 10.1016/j.diii.2023.05.007. Epub 2023 Jun 14.
PURPOSE
In 2022, the French Society of Radiology together with the French Society of Thoracic Imaging and CentraleSupelec organized their 13th data challenge. The aim was to aid in the diagnosis of pulmonary embolism, by identifying the presence of pulmonary embolism and by estimating the ratio between right and left ventricular (RV/LV) diameters, and an arterial obstruction index (Qanadli's score) using artificial intelligence.
MATERIALS AND METHODS
The data challenge was composed of three tasks: the detection of pulmonary embolism, the RV/LV diameter ratio, and Qanadli's score. Sixteen centers all over France participated in the inclusion of the cases. A health data hosting certified web platform was established to facilitate the inclusion process of the anonymized CT examinations in compliance with general data protection regulation. CT pulmonary angiography images were collected. Each center provided the CT examinations with their annotations. A randomization process was established to pool the scans from different centers. Each team was required to have at least a radiologist, a data scientist, and an engineer. Data were provided in three batches to the teams, two for training and one for evaluation. The evaluation of the results was determined to rank the participants on the three tasks.
RESULTS
A total of 1268 CT examinations were collected from the 16 centers following the inclusion criteria. The dataset was split into three batches of 310, 580 and 378 C T examinations provided to the participants respectively on September 5, 2022, October 7, 2022 and October 9, 2022. Seventy percent of the data from each center were used for training, and 30% for the evaluation. Seven teams with a total of 48 participants including data scientists, researchers, radiologists and engineering students were registered for participation. The metrics chosen for evaluation included areas under receiver operating characteristic curves, specificity and sensitivity for the classification task, and the coefficient of determination r for the regression tasks. The winning team achieved an overall score of 0.784.
CONCLUSION
This multicenter study suggests that the use of artificial intelligence for the diagnosis of pulmonary embolism is possible on real data. Moreover, providing quantitative measures is mandatory for the interpretability of the results, and is of great aid to the radiologists especially in emergency settings.
目的
2022年,法国放射学会与法国胸部影像学会及中央理工大学高等电力学院联合组织了第13次数据挑战赛。其目的是利用人工智能识别肺栓塞的存在、估计右心室与左心室直径之比(RV/LV)以及动脉阻塞指数(卡纳迪评分),以辅助肺栓塞的诊断。
材料与方法
数据挑战赛由三项任务组成:肺栓塞检测、RV/LV直径比以及卡纳迪评分。法国各地的16个中心参与了病例纳入工作。建立了一个经过健康数据托管认证的网络平台,以促进匿名CT检查的纳入过程,确保符合通用数据保护法规。收集了CT肺动脉造影图像。每个中心提供带有注释的CT检查。建立了随机化流程,以汇总来自不同中心的扫描数据。每个团队至少需要一名放射科医生、一名数据科学家和一名工程师。数据分三批提供给各团队,两批用于训练,一批用于评估。根据三项任务的结果对参与者进行排名来确定评估结果。
结果
按照纳入标准,从16个中心共收集了1268例CT检查。数据集分为三批,分别于2022年9月5日、2022年10月7日和2022年10月9日向参与者提供了310例、580例和378例CT检查。每个中心70%的数据用于训练,30%用于评估。共有7支团队、48名参与者(包括数据科学家、研究人员、放射科医生和工科学生)报名参赛。选择用于评估的指标包括受试者操作特征曲线下面积、分类任务的特异性和敏感性以及回归任务的决定系数r。获胜团队的总分为0.784。
结论
这项多中心研究表明,利用人工智能对真实数据进行肺栓塞诊断是可行的。此外,为了使结果具有可解释性,提供定量测量是必不可少的,这对放射科医生尤其在紧急情况下有很大帮助。