Suppr超能文献

一种由脑电图信号控制的具有明显触觉感知的低成本机器人假手。

A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals.

作者信息

Cutipa-Puma Diego Ronaldo, Coaguila-Quispe Cristian Giovanni, Yanyachi Pablo Raul

机构信息

School of Electronics Engineering, Universidad Nacional de San Agustín, Arequipa, Peru.

Instituto de Investigación Astronómico y Aeroespacial Pedro Paulet IAAPP-UNSA, Universidad Nacional de San Agustín, Arequipa, Peru.

出版信息

HardwareX. 2023 Jun 2;14:e00439. doi: 10.1016/j.ohx.2023.e00439. eCollection 2023 Jun.

Abstract

One of the biggest problems faced by amputees is obtaining a suitable low-cost prosthesis. To address this problem, the design and implementation of a transradial prosthesis controlled by electroencephalographic (EEG) signals was carried out. This prosthesis is an alternative to prostheses using electromyographic (EMG) signals, which are very complex and exhausting for the patient to execute. We collected EEG signal data using the Emotiv Insight Headset, which were then processed to control the movement of the prosthesis, known as the Zero Arm. Additionally, we incorporated Machine Learning algorithms to classify different types of objects and shapes. The prosthesis also features a haptic feedback system, which simulates the function of mechanoreceptors in the skin, providing the user with a sense of touch when using the prosthesis. Our research has yielded a viable and cost-effective prosthetic limb. We utilized 3D printing and easily obtainable servomotors and controllers, making the prosthesis affordable and accessible. Performance tests of the Zero Arm prosthesis have yielded promising results. The prosthesis demonstrated an average success rate of 86.67% across various tasks, indicating its reliability and effectiveness. Additionally, the prosthesis has an average recognition rate of 70% for different types of objects, a noteworthy accomplishment.

摘要

截肢者面临的最大问题之一是获得合适的低成本假肢。为了解决这个问题,开展了由脑电图(EEG)信号控制的经桡骨假肢的设计与实现。这种假肢是使用肌电图(EMG)信号的假肢的一种替代方案,对于患者来说,使用EMG信号的假肢执行起来非常复杂且费力。我们使用Emotiv Insight头戴设备收集EEG信号数据,然后对其进行处理以控制名为Zero Arm的假肢的运动。此外,我们纳入了机器学习算法来对不同类型的物体和形状进行分类。该假肢还具有触觉反馈系统,可模拟皮肤中机械感受器的功能,在使用假肢时为用户提供触觉感受。我们的研究产生了一种可行且具有成本效益的假肢。我们利用3D打印以及易于获得的伺服电机和控制器,使假肢价格实惠且易于获取。Zero Arm假肢的性能测试取得了令人满意的结果。该假肢在各种任务中的平均成功率为86.67%,表明了其可靠性和有效性。此外,该假肢对不同类型物体的平均识别率为70%,这是一项值得注意的成就。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afa/10267598/2bcc440899a9/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验