文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习助力纳米酶的合理设计。

Machine learning facilitating the rational design of nanozymes.

机构信息

CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China.

出版信息

J Mater Chem B. 2023 Jul 19;11(28):6466-6477. doi: 10.1039/d3tb00842h.


DOI:10.1039/d3tb00842h
PMID:37325942
Abstract

As a component substitute for natural enzymes, nanozymes have the advantages of easy synthesis, convenient modification, low cost, and high stability, and are widely used in many fields. However, their application is seriously restricted by the difficulty of rapidly creating high-performance nanozymes. The use of machine learning techniques to guide the rational design of nanozymes holds great promise to overcome this difficulty. In this review, we introduce the recent progress of machine learning in assisting the design of nanozymes. Particular attention is given to the successful strategies of machine learning in predicting the activity, selectivity, catalytic mechanisms, optimal structures and other features of nanozymes. The typical procedures and approaches for conducting machine learning in the study of nanozymes are also highlighted. Moreover, we discuss in detail the difficulties of machine learning methods in dealing with the redundant and chaotic nanozyme data and provide an outlook on the future application of machine learning in the nanozyme field. We hope that this review will serve as a useful handbook for researchers in related fields and promote the utilization of machine learning in nanozyme rational design and related topics.

摘要

作为天然酶的替代成分,纳米酶具有合成容易、修饰方便、成本低、稳定性高等优点,广泛应用于许多领域。然而,其应用受到快速创造高性能纳米酶的困难的严重限制。使用机器学习技术来指导纳米酶的合理设计具有很大的潜力来克服这一困难。在这篇综述中,我们介绍了机器学习在辅助纳米酶设计方面的最新进展。特别关注机器学习在预测纳米酶的活性、选择性、催化机制、最佳结构和其他特性方面的成功策略。还强调了在纳米酶研究中进行机器学习的典型程序和方法。此外,我们详细讨论了机器学习方法在处理冗余和混乱的纳米酶数据方面的困难,并对机器学习在纳米酶领域的未来应用进行了展望。我们希望这篇综述能为相关领域的研究人员提供有用的参考,并促进机器学习在纳米酶合理设计和相关课题中的应用。

相似文献

[1]
Machine learning facilitating the rational design of nanozymes.

J Mater Chem B. 2023-7-19

[2]
Machine-Learning-Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes.

Adv Mater. 2024-3

[3]
Rational Design Strategies for Nanozymes.

ACS Nano. 2023-7-25

[4]
Nanozymes with Multiple Activities: Prospects in Analytical Sensing.

Biosensors (Basel). 2022-4-16

[5]
Chemical design of nanozymes for biomedical applications.

Acta Biomater. 2021-5

[6]
Prediction and Design of Nanozymes using Explainable Machine Learning.

Adv Mater. 2022-7

[7]
Machine learning in nanozymes: from design to application.

Biomater Sci. 2024-4-30

[8]
Chiral Nanozymes for Enantioselective Biological Catalysis.

Angew Chem Int Ed Engl. 2022-10-24

[9]
Nanozymes: created by learning from nature.

Sci China Life Sci. 2020-1-21

[10]
Nanozymes-recent development and biomedical applications.

J Nanobiotechnology. 2022-2-22

引用本文的文献

[1]
Electrochemical (Bio)Sensors for Toxins, Foodborne Pathogens, Pesticides, and Antibiotics Detection: Recent Advances and Challenges in Food Analysis.

Biosensors (Basel). 2025-7-21

[2]
Nanozymes expanding the boundaries of biocatalysis.

Nat Commun. 2025-7-24

[3]
Nanozyme-driven multifunctional dressings: moving beyond enzyme-like catalysis in chronic wound treatment.

Mil Med Res. 2025-5-31

[4]
Iron oxide nanozymes as versatile analytical tools: an overview of their application as detection technique.

Bioanalysis. 2024

[5]
Advances in machine learning-enhanced nanozymes.

Front Chem. 2024-10-17

[6]
Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes.

Nanomicro Lett. 2023-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索