Suppr超能文献

机器学习指导基于磷掺杂分级多孔碳微球修饰的高稳定性紫磷烯制备纳米酶,用于青贮饲料中霉酚酸的便携式智能传感。

Machine learning-guided the fabrication of nanozyme based on highly-stable violet phosphorene decorated with phosphorus-doped hierarchically porous carbon microsphere for portable intelligent sensing of mycophenolic acid in silage.

作者信息

Ge Yu, Liu Peng, Chen Qian, Qu Mingren, Xu Lanjiao, Liang Huan, Zhang Xian, Huang Zhong, Wen Yangping, Wang Long

机构信息

Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045, PR China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China.

Department of Electrical Engineering, Jiangxi Vocational College of Mechanical & Electrical Technology, Nanchang, 330045, PR China.

出版信息

Biosens Bioelectron. 2023 Oct 1;237:115454. doi: 10.1016/j.bios.2023.115454. Epub 2023 Jun 7.

Abstract

Violet phosphorene (VP) have been proved to be more stable than black phosphorene, but few reports for its application in electrochemical sensors. In this study, a highly-stable VP decorated with phosphorus-doped hierarchically porous carbon microsphere (PCM) with multiple enzyme-like activities as a nanozyme sensing platform for portable intelligent analysis of mycophenolic acid (MPA) in silage with machine learning (ML) assistance is successfully fabricated. The pore size distribution on the PCM surface is discussed using N adsorption tests, and morphological characterization indicates that the PCM is embedded in the layers of lamellar VP. The affinity of the VP-PCM nanozyme obtained under the guidance of the ML model reaches K = 12.4 μmol/L for MPA. The VP-PCM/SPCE for the efficient detection of MPA exhibits high sensitivity, a wide detection range of 2.49 μmol/L - 71.14 μmol/L with a low limit of detection of 18.7 nmol/L. The proposed ML model with high prediction accuracy (R = 0.9999, MAPEP = 0.0081) assists the nanozyme sensor for intelligent and rapid quantification of MPA residues in corn silage and wheat silage with satisfactory recoveries of 93.33%-102.33%. The excellent biomimetic sensing properties of the VP-PCM nanozyme are driving the development of a novel MPA analysis strategy assisted by ML in the context of production requirements of livestock safety.

摘要

紫磷烯(VP)已被证明比黑磷烯更稳定,但关于其在电化学传感器中的应用报道较少。在本研究中,成功制备了一种由磷掺杂的分级多孔碳微球(PCM)修饰的高稳定性VP,该微球具有多种类酶活性,作为一种纳米酶传感平台,在机器学习(ML)辅助下用于便携式智能分析青贮饲料中的霉酚酸(MPA)。利用N吸附试验讨论了PCM表面的孔径分布,形态表征表明PCM嵌入在层状VP层中。在ML模型指导下获得的VP-PCM纳米酶对MPA的亲和力达到K = 12.4 μmol/L。用于高效检测MPA的VP-PCM/SPCE具有高灵敏度,检测范围宽,为2.49 μmol/L - 71.14 μmol/L,检测下限低至18.7 nmol/L。所提出的具有高预测准确性(R = 0.9999,MAPEP = 0.0081)的ML模型辅助纳米酶传感器对玉米青贮饲料和小麦青贮饲料中的MPA残留进行智能快速定量,回收率令人满意,为93.33%-102.33%。在牲畜安全生产需求背景下,VP-PCM纳米酶优异的仿生传感性能推动了一种由ML辅助的新型MPA分析策略的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验