Suppr超能文献

琥珀酸生产的进展:增强CO固定以实现碳封存效益。

Advances in succinic acid production: the enhancement of CO fixation for the carbon sequestration benefits.

作者信息

Lin Fanzhen, Li Wenwei, Wang Dan, Hu Ge, Qin Zhao, Xia Xue, Hu Lin, Liu Xuemei, Luo Ruoshi

机构信息

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.

出版信息

Front Bioeng Biotechnol. 2024 Mar 28;12:1392414. doi: 10.3389/fbioe.2024.1392414. eCollection 2024.

Abstract

Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.

摘要

琥珀酸(SA)是由生物质生产的12种顶级平台化学品之一,是各种高附加值衍生物的前体。特别地,在厌氧条件下,1摩尔一氧化碳在1摩尔SA生物合成途径中被同化,这有助于实现碳减排目标。在本综述中,对提高SA生产中一氧化碳固定的方法以及利用废弃生物质生产SA进行了综述。重点介绍了通过废气再利用构建的生物电化学和生物反应器耦合系统,以更有效地捕获一氧化碳。此外,还分析了由一氧化碳和废弃生物质合成生物基SA的技术经济分析和碳封存效益。最后,提出了一种基于液滴微流控的高通量筛选技术,作为未来SA生物生产的一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4903/11007169/3542ad731e2b/fbioe-12-1392414-g001.jpg

相似文献

1
Advances in succinic acid production: the enhancement of CO fixation for the carbon sequestration benefits.
Front Bioeng Biotechnol. 2024 Mar 28;12:1392414. doi: 10.3389/fbioe.2024.1392414. eCollection 2024.
2
Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae.
Microb Cell Fact. 2022 May 28;21(1):102. doi: 10.1186/s12934-022-01817-1.
3
Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production.
Bioresour Technol. 2022 Sep;360:127513. doi: 10.1016/j.biortech.2022.127513. Epub 2022 Jun 27.
4
Fixation of CO, electron donor and redox microenvironment regulate succinic acid production in Citrobacter amalonaticus.
Sci Total Environ. 2019 Dec 10;695:133838. doi: 10.1016/j.scitotenv.2019.133838. Epub 2019 Aug 8.
5
Life cycle analysis of fermentative production of succinic acid from bread waste.
Waste Manag. 2021 May 1;126:861-871. doi: 10.1016/j.wasman.2021.04.013. Epub 2021 Apr 23.
6
Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry.
Biotechnol Biofuels Bioprod. 2024 May 29;17(1):72. doi: 10.1186/s13068-024-02508-2.
7
Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy.
Sci Total Environ. 2022 Feb 1;806(Pt 1):150312. doi: 10.1016/j.scitotenv.2021.150312. Epub 2021 Sep 14.
8
Tunable production of succinic acid at elevated pressures of CO in a high pressure gas fermentation reactor.
Bioresour Technol. 2020 Aug;309:123327. doi: 10.1016/j.biortech.2020.123327. Epub 2020 Apr 8.
10
Enhanced direct gaseous CO fixation into higher bio-succinic acid production and selectivity.
J Environ Sci (China). 2024 Sep;143:164-175. doi: 10.1016/j.jes.2023.05.035. Epub 2023 Jun 1.

引用本文的文献

1
Genetic optimization of the human gut bacterium Phocaeicola vulgatus for enhanced succinate production.
Appl Microbiol Biotechnol. 2024 Sep 16;108(1):465. doi: 10.1007/s00253-024-13303-2.

本文引用的文献

2
Enhanced direct gaseous CO fixation into higher bio-succinic acid production and selectivity.
J Environ Sci (China). 2024 Sep;143:164-175. doi: 10.1016/j.jes.2023.05.035. Epub 2023 Jun 1.
3
Enhancement of cellulase production by cellulolytic bacteria SB125 in submerged fermentation medium and biochemical characterization of the enzyme.
Int J Biol Macromol. 2024 Apr;263(Pt 2):130415. doi: 10.1016/j.ijbiomac.2024.130415. Epub 2024 Feb 23.
5
Isolation of a newly Trichoderma asperellum LYS1 with abundant cellulase-hemicellulase enzyme cocktail for lignocellulosic biomass degradation.
Enzyme Microb Technol. 2023 Dec;171:110318. doi: 10.1016/j.enzmictec.2023.110318. Epub 2023 Sep 4.
7
Droplet microarray platforms for high-throughput drug screening.
Mikrochim Acta. 2023 Jun 15;190(7):260. doi: 10.1007/s00604-023-05833-9.
9
Recent advances in CO fixation by microalgae and its potential contribution to carbon neutrality.
Chemosphere. 2023 Apr;319:137987. doi: 10.1016/j.chemosphere.2023.137987. Epub 2023 Jan 28.
10
Substantial Improvement of an Epimerase for the Synthesis of D-Allulose by Biosensor-Based High-Throughput Microdroplet Screening.
Angew Chem Int Ed Engl. 2023 Mar 1;62(10):e202216721. doi: 10.1002/anie.202216721. Epub 2023 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验