Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan.
Department of Creative Technologies, Air University, Islamabad 44000, Pakistan.
Comput Intell Neurosci. 2022 Oct 4;2022:3145956. doi: 10.1155/2022/3145956. eCollection 2022.
Effective software cost estimation significantly contributes to decision-making. The rising trend of using nature-inspired meta-heuristic algorithms has been seen in software cost estimation problems. The constructive cost model (COCOMO) method is a well-known regression-based algorithmic technique for estimating software costs. The limitation of the COCOMO models is that the values of these coefficients are constant for similar kinds of projects whereas, in reality, these parameters vary from one organization to another organization. Therefore, for accurate estimation, it is necessary to fine-tune the coefficients. The research community is now examining deep learning (DL) as a forward-looking solution to improve cost estimation. Although deep learning architectures provide some improvements over existing flat technologies, they also have some shortcomings, such as large training delays, over-fitting, and under-fitting. Deep learning models usually require fine-tuning to a large number of parameters. The meta-heuristic algorithm supports finding a good optimal solution at a reasonable computational cost. Additionally, heuristic approaches allow for the location of an optimum solution. So, it can be used with deep neural networks to minimize training delays. The hybrid of ant colony optimization with BAT (HACO-BA) algorithm is a hybrid optimization technique that combines the most common global optimum search technique for ant colonies (ACO) in association with one of the newest search techniques called the BAT algorithm (BA). This technology supports the solution of multivariable problems and has been applied to the optimization of a large number of engineering problems. This work will perform a two-fold assessment of algorithms: (i) comparing the efficacy of ACO, BA, and HACO-BA in optimizing COCOMO II coefficients; and (ii) using HACO-BA algorithms to optimize and improve the deep learning training process. The experimental results show that the hybrid HACO-BA performs better as compared to ACO and BA for tuning COCOMO II. HACO-BA also performs better in the optimization of DNN in terms of execution time and accuracy. The process is executed upto 100 epochs, and the accuracy achieved by the proposed DNN approach is almost 98% while NN achieved accuracy of up to 85% on the same datasets.
有效的软件成本估算对决策有重要贡献。在软件成本估算问题中,使用受自然启发的元启发式算法的趋势一直在上升。构造成本模型 (COCOMO) 方法是一种著名的基于回归的算法技术,用于估算软件成本。COCOMO 模型的局限性在于,对于类似的项目,这些系数的值是恒定的,而实际上,这些参数在不同的组织之间是不同的。因此,为了进行准确的估算,有必要对系数进行微调。研究界现在正在将深度学习 (DL) 视为一种前瞻性的解决方案,以提高成本估算的准确性。虽然深度学习架构在现有平面技术上提供了一些改进,但它们也存在一些缺点,例如训练延迟大、过拟合和欠拟合。深度学习模型通常需要对大量参数进行微调。元启发式算法支持以合理的计算成本找到良好的最优解决方案。此外,启发式方法允许找到最优解决方案的位置。因此,可以将其与深度神经网络一起使用,以最小化训练延迟。蚁群优化与蝙蝠算法的混合 (HACO-BA) 算法是一种混合优化技术,它将蚁群 (ACO) 中最常见的全局最优搜索技术与最新的搜索技术之一蝙蝠算法 (BA) 结合在一起。该技术支持多变量问题的求解,并已应用于大量工程问题的优化。这项工作将对算法进行双重评估:(i) 比较 ACO、BA 和 HACO-BA 在优化 COCOMO II 系数方面的效果;(ii) 使用 HACO-BA 算法优化和改进深度学习训练过程。实验结果表明,与 ACO 和 BA 相比,混合 HACO-BA 对 COCOMO II 的调优效果更好。在 DNN 的优化方面,HACO-BA 在执行时间和准确性方面也表现更好。该过程执行了 100 个 epoch,所提出的 DNN 方法的准确率几乎达到 98%,而 NN 在相同数据集上的准确率最高达到 85%。