Suppr超能文献

scROSHI:单细胞的稳健监督分层识别

scROSHI: robust supervised hierarchical identification of single cells.

作者信息

Prummer Michael, Bertolini Anne, Bosshard Lars, Barkmann Florian, Yates Josephine, Boeva Valentina, Stekhoven Daniel, Singer Franziska

机构信息

Nexus Personalized Health Technologies, ETH Zurich, Zurich, Switzerland.

Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland.

出版信息

NAR Genom Bioinform. 2023 Jun 16;5(2):lqad058. doi: 10.1093/nargab/lqad058. eCollection 2023 Jun.

Abstract

Identifying cell types based on expression profiles is a pillar of single cell analysis. Existing machine-learning methods identify predictive features from annotated training data, which are often not available in early-stage studies. This can lead to overfitting and inferior performance when applied to new data. To address these challenges we present scROSHI, which utilizes previously obtained cell type-specific gene lists and does not require training or the existence of annotated data. By respecting the hierarchical nature of cell type relationships and assigning cells consecutively to more specialized identities, excellent prediction performance is achieved. In a benchmark based on publicly available PBMC data sets, scROSHI outperforms competing methods when training data are limited or the diversity between experiments is large.

摘要

基于表达谱识别细胞类型是单细胞分析的一个支柱。现有的机器学习方法从注释的训练数据中识别预测特征,而这些数据在早期研究中往往不可用。当应用于新数据时,这可能导致过拟合和性能不佳。为了应对这些挑战,我们提出了scROSHI,它利用先前获得的细胞类型特异性基因列表,不需要训练或注释数据的存在。通过尊重细胞类型关系的层次性质,并将细胞连续分配到更特殊的身份,实现了出色的预测性能。在基于公开可用的PBMC数据集的基准测试中,当训练数据有限或实验之间的差异很大时,scROSHI优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57de/10273189/baf02b3902fc/lqad058fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验