Xu Senwei, Zhu Li, Kong Wanzeng, Peng Yong, Hu Hua, Cao Jianting
School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 China.
Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, Zhejiang 310018 China.
Cogn Neurodyn. 2022 Apr;16(2):379-389. doi: 10.1007/s11571-021-09721-x. Epub 2021 Sep 28.
The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.
The online version contains supplementary material available at 10.1007/s11571-021-09721-x.
公共空间模式(CSP)算法是从运动想象(MI)范式中解码脑电图(EEG)信号时使用最广泛的方法。然而,由于个体间的变异性,CSP算法严重依赖于滤波频段的选择以及构建有效模型所需的大量分析处理时间,这一直是当前研究中的一个挑战。在本文中,我们提出了一种窄带滤波器组CSP(NFBCSP)算法,该算法通过频段搜索树自动确定两类运动想象的最优窄带,并且可以在短时间内获得针对每个受试者的高性能分类模型,用于在线处理或进一步的离线分析。将最优窄带与CSP算法相结合,以提取EEG信号中的动态特征。对于多类运动想象任务,首先将其转换为多个一对其余(OVR)任务,并确定相应的最优窄带。在分别提取每个最优窄带的特征后,使用深度卷积神经网络(DCNN)对频段特征进行融合并对多类运动想象进行分类。最后,我们使用两个不同的运动想象数据集验证了我们的方法,即具有两类运动想象的BCI-VR数据集和具有四类运动想象的BCI竞赛IV数据集2a。实验结果表明,所提出的方法在两类运动想象任务中平均分类准确率达到86.43%,在四类运动想象任务中达到76.87%,优于其他近期方法。
在线版本包含可在10.1007/s11571-021-09721-x获取的补充材料。