She Qingshan, Chen Tie, Fang Feng, Zhang Jianhai, Gao Yunyuan, Zhang Yingchun
IEEE Trans Neural Syst Rehabil Eng. 2023;31:1137-1148. doi: 10.1109/TNSRE.2023.3241846. Epub 2023 Feb 7.
Motor Imagery (MI) paradigm is critical in neural rehabilitation and gaming. Advances in brain-computer interface (BCI) technology have facilitated the detection of MI from electroencephalogram (EEG). Previous studies have proposed various EEG-based classification algorithms to identify the MI, however, the performance of prior models was limited due to the cross-subject heterogeneity in EEG data and the shortage of EEG data for training. Therefore, inspired by generative adversarial network (GAN), this study aims to propose an improved domain adaption network based on Wasserstein distance, which utilizes existing labeled data from multiple subjects (source domain) to improve the performance of MI classification on a single subject (target domain). Specifically, our proposed framework consists of three components, including a feature extractor, a domain discriminator, and a classifier. The feature extractor employs an attention mechanism and a variance layer to improve the discrimination of features extracted from different MI classes. Next, the domain discriminator adopts the Wasserstein matrix to measure the distance between source domain and target domain, and aligns the data distributions of source and target domain via adversarial learning strategy. Finally, the classifier uses the knowledge acquired from the source domain to predict the labels in the target domain. The proposed EEG-based MI classification framework was evaluated by two open-source datasets, the BCI Competition IV Datasets 2a and 2b. Our results demonstrated that the proposed framework could enhance the performance of EEG-based MI detection, achieving better classification results compared with several state-of-the-art algorithms. In conclusion, this study is promising in helping the neural rehabilitation of different neuropsychiatric diseases.
运动想象(MI)范式在神经康复和游戏中至关重要。脑机接口(BCI)技术的进步促进了从脑电图(EEG)中检测运动想象。先前的研究提出了各种基于EEG的分类算法来识别运动想象,然而,由于EEG数据中的跨主体异质性以及训练用EEG数据的短缺,先前模型的性能受到限制。因此,受生成对抗网络(GAN)的启发,本研究旨在提出一种基于Wasserstein距离的改进域适应网络,该网络利用来自多个主体(源域)的现有标记数据来提高单个主体(目标域)上运动想象分类的性能。具体而言,我们提出的框架由三个组件组成,包括一个特征提取器、一个域判别器和一个分类器。特征提取器采用注意力机制和方差层来提高从不同运动想象类别中提取的特征的辨别力。接下来,域判别器采用Wasserstein矩阵来测量源域和目标域之间的距离,并通过对抗学习策略对齐源域和目标域的数据分布。最后,分类器使用从源域获得的知识来预测目标域中的标签。所提出的基于EEG的运动想象分类框架通过两个开源数据集,即BCI竞赛IV数据集2a和2b进行了评估。我们的结果表明,所提出的框架可以提高基于EEG的运动想象检测的性能,与几种最新算法相比,取得了更好的分类结果。总之,本研究在帮助不同神经精神疾病的神经康复方面很有前景。