Suppr超能文献

一种基于脑部CT的预测和分析脑出血相关性肺炎的方法。

A brain CT-based approach for predicting and analyzing stroke-associated pneumonia from intracerebral hemorrhage.

作者信息

Yang Guangtong, Xu Min, Chen Wei, Qiao Xu, Shi Hongfeng, Hu Yongmei

机构信息

School of Control Science and Engineering, Shandong University, Jinan, China.

Neurointensive Care Unit, Shengli Oilfield Central Hospital, Dongying, China.

出版信息

Front Neurol. 2023 Jun 2;14:1139048. doi: 10.3389/fneur.2023.1139048. eCollection 2023.

Abstract

INTRODUCTION

Stroke-associated pneumonia (SAP) is a common complication of stroke that can increase the mortality rate of patients and the burden on their families. In contrast to prior clinical scoring models that rely on baseline data, we propose constructing models based on brain CT scans due to their accessibility and clinical universality.

METHODS

Our study aims to explore the mechanism behind the distribution and lesion areas of intracerebral hemorrhage (ICH) in relation to pneumonia, we utilized an MRI atlas that could present brain structures and a registration method in our program to extract features that may represent this relationship. We developed three machine learning models to predict the occurrence of SAP using these features. Ten-fold cross-validation was applied to evaluate the performance of models. Additionally, we constructed a probability map through statistical analysis that could display which brain regions are more frequently impacted by hematoma in patients with SAP based on four types of pneumonia.

RESULTS

Our study included a cohort of 244 patients, and we extracted 35 features that captured the invasion of ICH to different brain regions for model development. We evaluated the performance of three machine learning models, namely, logistic regression, support vector machine, and random forest, in predicting SAP, and the AUCs for these models ranged from 0.77 to 0.82. The probability map revealed that the distribution of ICH varied between the left and right brain hemispheres in patients with moderate and severe SAP, and we identified several brain structures, including the left-choroid-plexus, right-choroid-plexus, right-hippocampus, and left-hippocampus, that were more closely related to SAP based on feature selection. Additionally, we observed that some statistical indicators of ICH volume, such as mean and maximum values, were proportional to the severity of SAP.

DISCUSSION

Our findings suggest that our method is effective in classifying the development of pneumonia based on brain CT scans. Furthermore, we identified distinct characteristics, such as volume and distribution, of ICH in four different types of SAP.

摘要

引言

卒中相关性肺炎(SAP)是卒中常见的并发症,可增加患者死亡率及家庭负担。与以往依赖基线数据的临床评分模型不同,鉴于脑部CT扫描的可及性和临床普遍性,我们建议基于脑部CT扫描构建模型。

方法

本研究旨在探究脑出血(ICH)的分布及病变区域与肺炎相关的机制,我们利用一个能呈现脑结构的MRI图谱及程序中的配准方法来提取可能代表这种关系的特征。我们开发了三种机器学习模型,利用这些特征预测SAP的发生。采用十折交叉验证来评估模型性能。此外,我们通过统计分析构建了一个概率图,可根据四种肺炎类型显示哪些脑区在SAP患者中更常受到血肿影响。

结果

我们的研究纳入了244例患者队列,为模型开发提取了35个反映ICH侵入不同脑区的特征。我们评估了三种机器学习模型,即逻辑回归、支持向量机和随机森林在预测SAP方面的性能,这些模型的曲线下面积(AUC)范围为0.77至0.82。概率图显示,中重度SAP患者左右脑半球的ICH分布存在差异,基于特征选择,我们确定了几个与SAP关系更密切的脑结构,包括左侧脉络丛、右侧脉络丛、右侧海马体和左侧海马体。此外,我们观察到ICH体积的一些统计指标,如均值和最大值,与SAP的严重程度成正比。

讨论

我们的研究结果表明,我们的方法基于脑部CT扫描对肺炎的发展进行分类是有效的。此外,我们确定了四种不同类型SAP中ICH的不同特征,如体积和分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f0f/10272424/9ea23e302074/fneur-14-1139048-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验