Suppr超能文献

学习用于可变形配准的概率模型。

Learning a Probabilistic Model for Diffeomorphic Registration.

出版信息

IEEE Trans Med Imaging. 2019 Sep;38(9):2165-2176. doi: 10.1109/TMI.2019.2897112. Epub 2019 Feb 4.

Abstract

We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.

摘要

我们提出从数据中学习低维概率变形模型,该模型可用于配准和分析变形。潜在变量模型将相似的变形在编码空间中彼此靠近映射。它可以用于比较变形,为任何新图像生成正常或病理变形,或将变形从一对图像传输到任何其他图像。我们的无监督方法基于变分推理。特别是,我们使用条件变分自动编码器网络,并通过应用具有对称损失函数的可微指数层来约束变换为对称和可微分。我们还提出了一种包含空间正则化(如基于扩散的滤波器)的公式。此外,我们的框架提供多尺度速度场估计。我们使用 334 个心脏电影磁共振成像对 3-D 内体配准进行了评估。在这个数据集上,我们的方法在使用 32 个潜在维度时,与三种最先进的方法相比,具有 81.2%的平均 DICE 分数和 7.3 毫米的平均 Hausdorff 距离,表现出更规则的变形场,达到了最先进的水平。每次注册的平均时间为 0.32 秒。此外,我们还可视化了学习到的潜在空间,并展示了可以使用编码变形来传输变形,并在应用线性投影后以 83%的分类准确率对疾病进行聚类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验