Suppr超能文献

急性缺血性中风患者中风相关性肺炎的个体化预测

Individualized prediction of stroke-associated pneumonia for patients with acute ischemic stroke.

作者信息

Zhang Lulu, Wang Qi, Li Yidan, Fang Qi, Tang Xiang

机构信息

Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Neurol. 2025 Feb 7;16:1505270. doi: 10.3389/fneur.2025.1505270. eCollection 2025.

Abstract

BACKGROUND

Stroke-associated pneumonia (SAP) remains a neglected area despite its high morbidity and mortality. We aimed to establish an easy-to-use model for predicting SAP.

METHODS

Two hundred seventy-five acute ischemic stroke (AIS) patients were enrolled, and 73 (26.55%) patients were diagnosed with SAP. -test, Chi-square test and Fisher's exact test were used to investigate the associations of patient characteristics with pneumonia and its severity, and multivariable logistic regression models were used to construct a prediction scale.

RESULTS

Three variables with the most significant associations, including age, NGT placement, and right cerebral hemisphere lesions combined with gender, were used to construct a stroke-associated pneumonia prediction scale with high accuracy (AUC = 0.93). Youden index of our SAP prediction model was 0.77. The sensitivity and specificity of our SAP prediction model were 0.89 and 0.88, respectively.

CONCLUSION

We identified the best predictive model for SAP in AIS patients. Our study aimed to be as clinically relevant as possible, focusing on features that are routinely available. The contribution of selected variables is visually displayed through SHapley Additive exPlanations (SHAP). Our model can help to distinguish AIS patients of high-risk, provide specific management, reduce healthcare costs and prevent life-threatening complications and even death.

摘要

背景

尽管卒中相关性肺炎(SAP)发病率和死亡率很高,但仍是一个被忽视的领域。我们旨在建立一个易于使用的SAP预测模型。

方法

纳入275例急性缺血性卒中(AIS)患者,其中73例(26.55%)患者被诊断为SAP。采用t检验、卡方检验和Fisher精确检验来研究患者特征与肺炎及其严重程度之间的关联,并使用多变量逻辑回归模型构建预测量表。

结果

使用年龄、鼻胃管置入以及右侧大脑半球病变合并性别这三个关联最显著的变量构建了一个准确性较高的卒中相关性肺炎预测量表(AUC = 0.93)。我们的SAP预测模型的约登指数为0.77。我们的SAP预测模型的敏感性和特异性分别为0.89和0.88。

结论

我们确定了AIS患者中SAP的最佳预测模型。我们的研究旨在尽可能与临床相关,关注常规可得的特征。通过SHapley加性解释(SHAP)直观展示所选变量的贡献。我们的模型有助于区分高危AIS患者,提供具体管理措施,降低医疗成本,预防危及生命的并发症甚至死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd5f/11843556/35d8b0c50925/fneur-16-1505270-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验