Suppr超能文献

利用机器学习来研究与数字疗法的互动情况。

Leveraging machine learning to examine engagement with a digital therapeutic.

作者信息

Heusser Andrew C, DeLoss Denton J, Cañadas Elena, Alailima Titiimaea

机构信息

Akili Interactive, Boston, MA, United States.

出版信息

Front Digit Health. 2023 Jun 2;5:1063165. doi: 10.3389/fdgth.2023.1063165. eCollection 2023.

Abstract

Digital Therapeutics (DTx) are evidence-based software-driven interventions for the prevention, management, and treatment of medical disorders or diseases. DTx offer the unique ability to capture rich objective data about when and how a patient engages with a treatment. Not only can one measure the quantity of patient interactions with a digital treatment with high temporal precision, but one can also assess the quality of these interactions. This is particularly useful for treatments such as cognitive interventions, where the specific manner in which a patient engages may impact likelihood of treatment success. Here, we present a technique for measuring the quality of user interactions with a digital treatment in near-real time. This approach produces evaluations at the level of a roughly four-minute gameplay session (mission). Each mission required users to engage in adaptive and personalized multitasking training. The training included simultaneous presentation of a sensory-motor navigation task and a perceptual discrimination task. We trained a machine learning model to classify user interactions with the digital treatment to determine if they were "using it as intended" or "not using it as intended" based on labeled data created by subject matter experts (SME). On a held-out test set, the classifier was able to reliably predict the SME-derived labels (Accuracy = .94; F1 Score = .94). We discuss the value of this approach and highlight exciting future directions for shared decision-making and communication between caregivers, patients and healthcare providers. Additionally, the output of this technique can be useful for clinical trials and personalized intervention.

摘要

数字疗法(DTx)是基于证据的软件驱动型干预措施,用于预防、管理和治疗医学病症或疾病。DTx具有独特的能力,能够收集关于患者何时以及如何参与治疗的丰富客观数据。人们不仅可以高精度地测量患者与数字治疗的交互次数,还可以评估这些交互的质量。这对于认知干预等治疗尤为有用,因为患者参与治疗的具体方式可能会影响治疗成功的可能性。在此,我们提出一种用于近实时测量用户与数字治疗交互质量的技术。这种方法在大约四分钟的游戏环节(任务)层面进行评估。每个任务要求用户参与适应性和个性化的多任务训练。训练包括同时呈现一个感觉运动导航任务和一个感知辨别任务。我们训练了一个机器学习模型,根据主题专家(SME)创建的标记数据,对用户与数字治疗的交互进行分类,以确定他们是“按预期使用”还是“未按预期使用”。在一个留出的测试集上,分类器能够可靠地预测SME得出的标签(准确率 = 0.94;F1分数 = 0.94)。我们讨论了这种方法的价值,并强调了护理人员、患者和医疗保健提供者之间共享决策和沟通的令人兴奋的未来方向。此外,这项技术的输出对于临床试验和个性化干预可能会很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f3/10272789/40e371d17490/fdgth-05-1063165-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验