Ferreyra Maillard Anike P V, Bordón Anahí, Cutro Andrea C, Dalmasso Pablo R, Hollmann Axel
Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina.
Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina.
Appl Biochem Biotechnol. 2024 Feb;196(2):1104-1121. doi: 10.1007/s12010-023-04591-x. Epub 2023 Jun 19.
The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action. The nanomaterials obtained were characterized by UV‒vis spectroscopy, DLS, TEM, and Raman, confirming the presence of quasi-spherical AgNPs with a negative surface charge and diameter around 11 nm. Afterward, the minimum inhibitory and bactericidal concentration of the AgNPs against Staphylococcus aureus and Escherichia coli were obtained, showing high antibacterial activity. In both of the examined bacteria, the AgNPs were able to raise intracellular ROS levels. In E. coli, the AgNPs can harm the bacterial membrane as well. Overall, it can be concluded that it was possible to obtain AgNPs with colloidal stability and antibacterial activity against Gram-positive and Gram-negative bacteria. Our findings point to at least two separate mechanisms that can cause cell death, one of which involves bacterial membrane damage and the other of which involves intracellular ROS induction.
抗生素耐药菌的不断出现是一个全球性的严重健康问题。从这个意义上说,银纳米颗粒(AgNPs)因其抗菌活性而受到越来越多的关注。在此背景下,本研究的目标是通过绿色合成方案,使用阿根廷胡椒叶水提取物作为生物复合材料来制备AgNPs,随后表征其抗菌作用。通过紫外可见光谱、动态光散射、透射电子显微镜和拉曼光谱对所得纳米材料进行了表征,证实了存在表面带负电荷、直径约为11nm的准球形AgNPs。之后,测定了AgNPs对金黄色葡萄球菌和大肠杆菌的最低抑菌浓度和最低杀菌浓度,结果显示其具有高抗菌活性。在两种受试细菌中,AgNPs均能够提高细胞内活性氧水平。在大肠杆菌中,AgNPs还会损害细菌细胞膜。总体而言,可以得出结论,能够获得具有胶体稳定性且对革兰氏阳性菌和革兰氏阴性菌均有抗菌活性的AgNPs。我们的研究结果指出了至少两种可导致细胞死亡的独立机制,其中一种涉及细菌细胞膜损伤,另一种涉及细胞内活性氧的诱导。