Suppr超能文献

PUGAN:使用具有双判别器的生成对抗网络进行物理模型引导的水下图像增强

PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN With Dual-Discriminators.

作者信息

Cong Runmin, Yang Wenyu, Zhang Wei, Li Chongyi, Guo Chun-Le, Huang Qingming, Kwong Sam

出版信息

IEEE Trans Image Process. 2023;32:4472-4485. doi: 10.1109/TIP.2023.3286263. Epub 2023 Aug 8.

Abstract

Due to the light absorption and scattering induced by the water medium, underwater images usually suffer from some degradation problems, such as low contrast, color distortion, and blurring details, which aggravate the difficulty of downstream underwater understanding tasks. Therefore, how to obtain clear and visually pleasant images has become a common concern of people, and the task of underwater image enhancement (UIE) has also emerged as the times require. Among existing UIE methods, Generative Adversarial Networks (GANs) based methods perform well in visual aesthetics, while the physical model-based methods have better scene adaptability. Inheriting the advantages of the above two types of models, we propose a physical model-guided GAN model for UIE in this paper, referred to as PUGAN. The entire network is under the GAN architecture. On the one hand, we design a Parameters Estimation subnetwork (Par-subnet) to learn the parameters for physical model inversion, and use the generated color enhancement image as auxiliary information for the Two-Stream Interaction Enhancement sub-network (TSIE-subnet). Meanwhile, we design a Degradation Quantization (DQ) module in TSIE-subnet to quantize scene degradation, thereby achieving reinforcing enhancement of key regions. On the other hand, we design the Dual-Discriminators for the style-content adversarial constraint, promoting the authenticity and visual aesthetics of the results. Extensive experiments on three benchmark datasets demonstrate that our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics. The code and results can be found from the link of https://rmcong.github.io/proj_PUGAN.html.

摘要

由于水介质引起的光吸收和散射,水下图像通常会出现一些退化问题,如对比度低、颜色失真和细节模糊等,这加剧了下游水下理解任务的难度。因此,如何获得清晰且视觉效果良好的图像已成为人们共同关注的问题,水下图像增强(UIE)任务也应运而生。在现有的UIE方法中,基于生成对抗网络(GAN)的方法在视觉美学方面表现出色,而基于物理模型的方法具有更好的场景适应性。本文继承上述两种模型的优点,提出了一种用于UIE的物理模型引导GAN模型,称为PUGAN。整个网络基于GAN架构。一方面,我们设计了一个参数估计子网(Par-subnet)来学习物理模型反演的参数,并将生成的颜色增强图像用作双流交互增强子网(TSIE-subnet)的辅助信息。同时,我们在TSIE-subnet中设计了一个退化量化(DQ)模块来量化场景退化,从而实现关键区域的强化增强。另一方面,我们设计了双判别器用于风格-内容对抗约束,提升结果的真实性和视觉美学。在三个基准数据集上进行的大量实验表明,我们的PUGAN在定性和定量指标上均优于现有方法。代码和结果可从https://rmcong.github.io/proj_PUGAN.html链接获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验