Suppr超能文献

PCAFA-Net:一种具有频率-空间注意力的水下图像增强物理引导网络。

PCAFA-Net: A Physically Guided Network for Underwater Image Enhancement with Frequency-Spatial Attention.

作者信息

Cheng Kai, Zhao Lei, Xue Xiaojun, Liu Jieyin, Li Heng, Liu Hui

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China.

School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Sensors (Basel). 2025 Mar 17;25(6):1861. doi: 10.3390/s25061861.

Abstract

Underwater images frequently experience degradation, including color shifts, blurred details, and reduced contrast, primarily caused by light scattering and the challenging underwater conditions. The conventional methods based on physical models have proven insufficient for effectively addressing diverse underwater conditions, while deep learning approaches are limited by the quantity and diversity of data, making it challenging to perform well in unknown environments. Furthermore, these methods typically fail to fully exploit the spectral differences between clear and degraded images and do not capture critical information in the frequency domain, limiting further improvements in enhancement performance. In order to tackle these challenges, we introduce PCAFA-Net, a physically guided network designed for enhancing underwater images through adaptive adjustment in multiple color spaces and the use of frequency-spatial attention. Our proposed model is made up of three essential modules: the Adaptive Gradient Simulation Module (AGSM), which models the degradation mechanism of underwater images; the Adaptive Color Range Adjustment Module (ACRAM), which adaptively modifies the histogram distributions across RGB, Lab, and HIS color spaces; and the Frequency-Spatial Strip Attention Module (FSSAM), which fully utilizes both frequency and spatial domain information. Extensive experiments were conducted on three datasets, demonstrating that our proposed method outperforms others in both subjective and objective evaluations.

摘要

水下图像经常会出现退化,包括颜色偏移、细节模糊和对比度降低,主要是由光散射和具有挑战性的水下环境造成的。基于物理模型的传统方法已被证明不足以有效应对各种水下环境,而深度学习方法则受到数据数量和多样性的限制,在未知环境中难以表现出色。此外,这些方法通常无法充分利用清晰图像和退化图像之间的光谱差异,也无法捕捉频域中的关键信息,限制了增强性能的进一步提升。为了应对这些挑战,我们引入了PCAFA-Net,这是一个物理引导的网络,旨在通过在多个颜色空间中的自适应调整和使用频率-空间注意力来增强水下图像。我们提出的模型由三个基本模块组成:自适应梯度模拟模块(AGSM),它对水下图像的退化机制进行建模;自适应颜色范围调整模块(ACRAM),它在RGB、Lab和HIS颜色空间中自适应地修改直方图分布;以及频率-空间条注意力模块(FSSAM),它充分利用频域和空间域信息。我们在三个数据集上进行了广泛的实验,结果表明我们提出的方法在主观和客观评估中均优于其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad61/11946397/92c02d604b3e/sensors-25-01861-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验