Li Chongyi, Anwar Saeed, Hou Junhui, Cong Runmin, Guo Chunle, Ren Wenqi
IEEE Trans Image Process. 2021;30:4985-5000. doi: 10.1109/TIP.2021.3076367. Epub 2021 May 14.
Underwater images suffer from color casts and low contrast due to wavelength- and distance-dependent attenuation and scattering. To solve these two degradation issues, we present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor. Concretely, we first propose a multi-color space encoder network, which enriches the diversity of feature representations by incorporating the characteristics of different color spaces into a unified structure. Coupled with an attention mechanism, the most discriminative features extracted from multiple color spaces are adaptively integrated and highlighted. Inspired by underwater imaging physical models, we design a medium transmission (indicating the percentage of the scene radiance reaching the camera)-guided decoder network to enhance the response of network towards quality-degraded regions. As a result, our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding and the advantages of both physical model-based and learning-based methods. Extensive experiments demonstrate that our Ucolor achieves superior performance against state-of-the-art methods in terms of both visual quality and quantitative metrics. The code is publicly available at: https://li-chongyi.github.io/Proj_Ucolor.html.
由于波长和距离依赖性衰减及散射,水下图像存在色偏和对比度低的问题。为了解决这两个退化问题,我们提出了一种通过介质传输引导的多色彩空间嵌入的水下图像增强网络,称为Ucolor。具体而言,我们首先提出了一种多色彩空间编码器网络,该网络通过将不同色彩空间的特征纳入统一结构来丰富特征表示的多样性。结合注意力机制,从多个色彩空间中提取的最具判别力的特征被自适应地整合并突出显示。受水下成像物理模型的启发,我们设计了一种介质传输(表示到达相机的场景辐射百分比)引导的解码器网络,以增强网络对质量退化区域的响应。结果,我们的网络可以通过利用多色彩空间嵌入以及基于物理模型和基于学习的方法的优势,有效地提高水下图像的视觉质量。大量实验表明,我们的Ucolor在视觉质量和定量指标方面均优于现有方法。代码可在以下网址公开获取:https://li-chongyi.github.io/Proj_Ucolor.html。