Suppr超能文献

基于机器学习方法的复杂嵌段共聚物图案模板设计。

Template Design for Complex Block Copolymer Patterns Using a Machine Learning Method.

机构信息

The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 28;15(25):31049-31056. doi: 10.1021/acsami.3c05018. Epub 2023 Jun 19.

Abstract

This study represents the first attempt to address the inverse design problem of the guiding template for directed self-assembly (DSA) patterns using solely machine learning methods. By formulating the problem as a multi-label classification task, the study shows that it is possible to predict templates without requiring any forward simulations. A series of neural network (NN) models, ranging from the basic two-layer convolutional neural network (CNN) to the large NN models (32-layer CNN with 8 residual blocks), have been trained using simulated pattern samples generated by thousands of self-consistent field theory (SCFT) calculations; a number of augmentation techniques, especially suitable for predicting morphologies, have been also proposed to enhance the performance of the NN model. The exact match accuracy of the model in predicting the template of simulated patterns was significantly improved from 59.8% for the baseline model to 97.1% for the best model of this study. The best model also demonstrates an excellent generalization ability in predicting the template for human-designed DSA patterns, while the simplest baseline model is ineffective in this task.

摘要

本研究首次尝试仅使用机器学习方法解决导向自组装(DSA)图案导向模板的逆向设计问题。通过将问题表述为多标签分类任务,研究表明可以在不进行任何正向模拟的情况下预测模板。使用数千次自洽场理论(SCFT)计算生成的模拟模式样本,对一系列神经网络(NN)模型进行了训练,这些模型从基本的两层卷积神经网络(CNN)到大型 NN 模型(具有 8 个残差块的 32 层 CNN);还提出了许多特别适用于预测形态的增强技术,以提高 NN 模型的性能。与基线模型相比,用于预测模拟模式模板的模型的精确匹配准确率从 59.8%显著提高到本研究最佳模型的 97.1%。最佳模型还展示了在预测人为设计的 DSA 模式模板方面的出色泛化能力,而最简单的基线模型在该任务中无效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验