School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
Nat Commun. 2024 Aug 22;15(1):7210. doi: 10.1038/s41467-024-51630-0.
Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.
由 DNA 制成的合成膜纳米孔是用于生物传感、测序和合成细胞中分子传输检测和控制的有前途的系统。与天然离子通道类似的可调节腔纳米孔以及腔尺寸的系统增加一直是开发纳米孔的长期愿望。在这里,我们设计了一种具有大可调腔的三角形 DNA 纳米孔。它允许在不改变其稳定三角形形状的情况下原位从扩展状态转变为收缩状态,反之亦然,其中特定的 DNA 结合作为刺激物机械地夹捏和释放三角形框架的三个角。透射电子显微镜图像和分子动力学模拟说明了稳定的结构和高形状保留。单通道电流记录和荧光流入研究表明可实现低噪声可重复的读出和可控的跨膜大分子传输。我们设想所提出的 DNA 纳米孔可以为分子传感、药物输送和合成细胞的创建提供强大的工具。