Suppr超能文献

采用生物信息学和机器学习方法鉴定脓毒症诱导的 ARDS 中的巨噬细胞相关基因。

Identification of macrophage-related genes in sepsis-induced ARDS using bioinformatics and machine learning.

机构信息

Department of Emergency Medicine, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Hexi District, Tianjin, 300211, China.

Department of Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.

出版信息

Sci Rep. 2023 Jun 19;13(1):9876. doi: 10.1038/s41598-023-37162-5.

Abstract

Sepsis-induced acute respiratory distress syndrome (ARDS) is one of the leading causes of death in critically ill patients, and macrophages play very important roles in the pathogenesis and treatment of sepsis-induced ARDS. The aim of this study was to screen macrophage-related biomarkers for the diagnosis and treatment of sepsis-induced ARDS by bioinformatics and machine learning algorithms. A dataset including gene expression profiles of sepsis-induced ARDS patients and healthy controls was downloaded from the gene expression omnibus database. The limma package was used to screen 325 differentially expressed genes, and enrichment analysis suggested enrichment mainly in immune-related pathways and reactive oxygen metabolism pathways. The level of immune cell infiltration was analysed using the ssGSEA method, and then 506 macrophage-related genes were screened using WGCNA; 48 showed differential expression. PPI analysis was also performed. SVM-RFE and random forest map analysis were used to screen 10 genes. Three key genes, SGK1, DYSF and MSRB1, were obtained after validation with external datasets. ROC curves suggested that all three genes had good diagnostic efficacy. The nomogram model consisting of the three genes also had good diagnostic efficacy. This study provides new targets for the early diagnosis of sepsis-induced ARDS.

摘要

脓毒症诱导的急性呼吸窘迫综合征(ARDS)是危重病患者死亡的主要原因之一,巨噬细胞在脓毒症诱导的 ARDS 的发病机制和治疗中发挥着非常重要的作用。本研究旨在通过生物信息学和机器学习算法筛选与巨噬细胞相关的生物标志物,用于脓毒症诱导的 ARDS 的诊断和治疗。从基因表达综合数据库中下载了一个包含脓毒症诱导的 ARDS 患者和健康对照者基因表达谱的数据集。使用 limma 包筛选了 325 个差异表达基因,富集分析表明这些基因主要富集在免疫相关通路和活性氧代谢通路中。使用 ssGSEA 方法分析免疫细胞浸润水平,然后使用 WGCNA 筛选 506 个与巨噬细胞相关的基因,其中 48 个基因表现出差异表达。还进行了 PPI 分析。使用 SVM-RFE 和随机森林图谱分析筛选了 10 个基因。使用外部数据集进行验证后,得到了三个关键基因 SGK1、DYSF 和 MSRB1。ROC 曲线表明,这三个基因均具有良好的诊断效能。由这三个基因组成的列线图模型也具有良好的诊断效能。本研究为脓毒症诱导的 ARDS 的早期诊断提供了新的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad6f/10279743/1f6472e7679f/41598_2023_37162_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验