文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习模型预测脓毒症相关急性呼吸窘迫综合征的死亡率及风险因素。

Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

作者信息

Xu Zhiwei, Zhang Kai, Liu Danqin, Fang Xiangming

机构信息

Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Neurocritical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China.

出版信息

Sci Rep. 2025 Apr 18;15(1):13509. doi: 10.1038/s41598-025-96501-w.


DOI:10.1038/s41598-025-96501-w
PMID:40251182
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12008361/
Abstract

Sepsis related acute respiratory distress syndrome (ARDS) is a common and serious disease in clinic. Accurate prediction of in-hospital mortality of patients is crucial to optimize treatment and improve prognosis under the new global definition of ARDS. Our study aimed to use machine learning models to develop models that can effectively predict the in-hospital mortality of patients with sepsis related ARDS, calculate the mortality, and to identify related risk factors under the new global definition of ARDS. Based on MIMIC database, our study included 3470 first-time admission records of patients with sepsis related ARDS. After excluding 4 patients under the age of 18, 75 patients with less than 24 h stay in ICU, and 5 cases with missing indicators > 30%, finally 3386 cases were retained. The variance inflation factor (VIF) analysis was used to test the collinearity of the explanatory variables. The data were divided into the training set and the test set according to the ratio of 7:3. Six models, extreme gradient boosting (XGBoost), light gradient boosting (LightGBM), random forest (RF), classification and regression tree (CART), naive bayes (NB) and logistic regression (LR), were designed for training and testing. In the training set, XGBoost (AUROC = 0.951, 95% CI 0.942-0.961), LR (AUROC = 0.835, 95% CI 0.817-0.854), RF (AUROC = 1.0, 95% CI 1.0-1.0), LightGBM (AUROC = 1.0, 95% CI 1.0-1.0), CART (AUROC = 0.831, 95% CI 0.811-0.852), NB (AUROC = 0.793, 95% CI 0.772-0.814). In the test set, XGBoost (AUROC = 0.833, 95% CI 0.804-0.861), LR (AUROC = 0.82695% CI 0.796-0.856), RF (AUROC = 0.846, 95% CI 0.818-0.874), LightGBM (AUROC = 0.827, 95% CI 0.798-0.856), CART (AUROC = 0.753, 95% CI 0.718-0.787), NB (AUROC = 0.799, 95% CI 0.768-0.831). The RF model has the best performance on the test set. Further analyze the feature importance ranking and partial dependence plots of random forest model. Acute physiology and chronic health evaluation III (APACHE III), bicarbonate, anion gap and non-invasive blood pressure systolic were identified as the four most important risk characteristics. In this study, a variety of machine learning models have been successfully constructed to predict the in-hospital mortality of patients with sepsis related ARDS, among which the RF model performs well. Key risk factors identified include APACHE III, bicarbonate, anion gap and non-invasive blood pressure systolic. The identification of these factors helps clinicians to assess patients' conditions more accurately and develop personalized treatment plans, thereby improving the survival rate and prognosis quality of patients under the new global definition of ARDS.

摘要

脓毒症相关急性呼吸窘迫综合征(ARDS)是临床上一种常见且严重的疾病。在ARDS新的全球定义下,准确预测患者的院内死亡率对于优化治疗和改善预后至关重要。我们的研究旨在使用机器学习模型来开发能够有效预测脓毒症相关ARDS患者院内死亡率的模型,计算死亡率,并在ARDS新的全球定义下识别相关风险因素。基于MIMIC数据库,我们的研究纳入了3470例脓毒症相关ARDS患者的首次入院记录。排除18岁以下患者4例、在重症监护病房(ICU)停留时间少于24小时的患者75例以及指标缺失>30%的病例5例后,最终保留3386例病例。采用方差膨胀因子(VIF)分析来检验解释变量的共线性。数据按照7:3的比例分为训练集和测试集。设计了六种模型,即极端梯度提升(XGBoost)、轻梯度提升(LightGBM)、随机森林(RF)、分类与回归树(CART)、朴素贝叶斯(NB)和逻辑回归(LR)进行训练和测试。在训练集中,XGBoost(曲线下面积[AUC] = 0.951,95%置信区间[CI] 0.942 - 0.961)、LR(AUC = 0.835,95% CI 0.817 - 0.854)、RF(AUC = 1.0,95% CI 1.0 - 1.0)、LightGBM(AUC = 1.0,95% CI 1.0 - 1.0)、CART(AUC = 0.831,95% CI 0.811 - 0.852)、NB(AUC = 0.793,95% CI 0.772 - 0.814)。在测试集中,XGBoost(AUC = 0.833,95% CI 0.804 - 0.861)、LR(AUC = 0.826,95% CI 0.796 - 0.856)、RF(AUC = 0.846,95% CI 0.818 - 0.874)、LightGBM(AUC = 0.827,95% CI 0.798 - 0.856)、CART(AUC = 0.753,95% CI 0.718 - 0.787)、NB(AUC = 0.799,95% CI 0.768 - 0.831)。RF模型在测试集上表现最佳。进一步分析随机森林模型的特征重要性排名和部分依赖图。急性生理与慢性健康状况评价III(APACHE III)、碳酸氢盐、阴离子间隙和无创收缩压被确定为四个最重要的风险特征。在本研究中,成功构建了多种机器学习模型来预测脓毒症相关ARDS患者的院内死亡率,其中RF模型表现良好。确定的关键风险因素包括APACHE III、碳酸氢盐、阴离子间隙和无创收缩压。这些因素的识别有助于临床医生更准确地评估患者病情并制定个性化治疗方案,从而在ARDS新的全球定义下提高患者的生存率和预后质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/d193dd76fb67/41598_2025_96501_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/129841a8ae76/41598_2025_96501_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/b9228743445d/41598_2025_96501_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/8174efd3baf1/41598_2025_96501_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/d193dd76fb67/41598_2025_96501_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/129841a8ae76/41598_2025_96501_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/b9228743445d/41598_2025_96501_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/8174efd3baf1/41598_2025_96501_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a8/12008361/d193dd76fb67/41598_2025_96501_Fig4_HTML.jpg

相似文献

[1]
Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

Sci Rep. 2025-4-18

[2]
Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database.

J Intensive Care Med. 2025-3

[3]
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[4]
Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms.

Medicina (Kaunas). 2023-1-15

[5]
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.

BMC Med Inform Decis Mak. 2020-10-2

[6]
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-7

[7]
Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery.

Comput Methods Programs Biomed. 2025-3

[8]
Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.

J Med Internet Res. 2024-5-1

[9]
Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study.

Ann Transl Med. 2021-5

[10]
Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU.

Int J Med Inform. 2025-6

引用本文的文献

[1]
Predicting 30-day in-hospital mortality in ICU asthma patients: a retrospective machine learning study with external validation.

BMC Pulm Med. 2025-8-12

本文引用的文献

[1]
Machine learning-based model for predicting the occurrence and mortality of nonpulmonary sepsis-associated ARDS.

Sci Rep. 2024-11-15

[2]
Interpretable prediction of 30-day mortality in patients with acute pancreatitis based on machine learning and SHAP.

BMC Med Inform Decis Mak. 2024-11-5

[3]
Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications.

Cell Commun Signal. 2024-4-25

[4]
Aldosterone levels do not predict 28-day mortality in patients treated for COVID-19 in the intensive care unit.

Sci Rep. 2024-4-3

[5]
Machine learning for the early prediction of acute respiratory distress syndrome (ARDS) in patients with sepsis in the ICU based on clinical data.

Heliyon. 2024-3-13

[6]
The new global definition of acute respiratory distress syndrome: insights from the MIMIC-IV database.

Intensive Care Med. 2024-4

[7]
Exploring the ferroptosis-related gene lipocalin 2 as a potential biomarker for sepsis-induced acute respiratory distress syndrome based on machine learning.

Biochim Biophys Acta Mol Basis Dis. 2024-4

[8]
Exploring the therapeutic role of early heparin administration in ARDS management: a MIMIC-IV database analysis.

J Intensive Care. 2024-2-26

[9]
2024 Focused Update: Guidelines on Use of Corticosteroids in Sepsis, Acute Respiratory Distress Syndrome, and Community-Acquired Pneumonia.

Crit Care Med. 2024-5-1

[10]
Executive Summary: Guidelines on Use of Corticosteroids in Critically Ill Patients With Sepsis, Acute Respiratory Distress Syndrome, and Community-Acquired Pneumonia Focused Update 2024.

Crit Care Med. 2024-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索