Suppr超能文献

分析推特上不含氟化物的内容:主题建模研究。

Analysis of Fluoride-Free Content on Twitter: Topic Modeling Study.

机构信息

Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.

School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.

出版信息

J Med Internet Res. 2023 Jun 20;25:e44586. doi: 10.2196/44586.

Abstract

BACKGROUND

Although social media has the potential to spread misinformation, it can also be a valuable tool for elucidating the social factors that contribute to the onset of negative beliefs. As a result, data mining has become a widely used technique in infodemiology and infoveillance research to combat misinformation effects. On the other hand, there is a lack of studies that specifically aim to investigate misinformation about fluoride on Twitter. Web-based individual concerns on the side effects of fluoridated oral care products and tap water stimulate the emergence and propagation of convictions that boost antifluoridation activism. In this sense, a previous content analysis-driven study demonstrated that the term fluoride-free was frequently associated with antifluoridation interests.

OBJECTIVE

This study aimed to analyze "fluoride-free" tweets regarding their topics and frequency of publication over time.

METHODS

A total of 21,169 tweets published in English between May 2016 and May 2022 that included the keyword "fluoride-free" were retrieved by the Twitter application programming interface. Latent Dirichlet allocation (LDA) topic modeling was applied to identify the salient terms and topics. The similarity between topics was calculated through an intertopic distance map. Moreover, an investigator manually assessed a sample of tweets depicting each of the most representative word groups that determined specific issues. Lastly, additional data visualization was performed regarding the total count of each topic of fluoride-free record and its relevance over time, using Elastic Stack software.

RESULTS

We identified 3 issues by applying the LDA topic modeling: "healthy lifestyle" (topic 1), "consumption of natural/organic oral care products" (topic 2), and "recommendations for using fluoride-free products/measures" (topic 3). Topic 1 was related to users' concerns about leading a healthier lifestyle and the potential impacts of fluoride consumption, including its hypothetical toxicity. Complementarily, topic 2 was associated with users' personal interests and perceptions of consuming natural and organic fluoride-free oral care products, whereas topic 3 was linked to users' recommendations for using fluoride-free products (eg, switching from fluoridated toothpaste to fluoride-free alternatives) and measures (eg, consuming unfluoridated bottled water instead of fluoridated tap water), comprising the propaganda of dental products. Additionally, the count of tweets on fluoride-free content decreased between 2016 and 2019 but increased again from 2020 onward.

CONCLUSIONS

Public concerns toward a healthy lifestyle, including the adoption of natural and organic cosmetics, seem to be the main motivation of the recent increase of "fluoride-free" tweets, which can be boosted by the propagation of fluoride falsehoods on the web. Therefore, public health authorities, health professionals, and legislators should be aware of the spread of fluoride-free content on social media to create and implement strategies against their potential health damage for the population.

摘要

背景

尽管社交媒体有可能传播错误信息,但它也可以成为阐明导致负面信念出现的社会因素的有价值的工具。因此,数据挖掘已成为 infodemiology 和 infoveillance 研究中用于对抗错误信息影响的广泛使用的技术。另一方面,缺乏专门针对 Twitter 上有关氟化物错误信息的研究。基于网络的个人对含氟口腔护理产品和自来水副作用的担忧刺激了对增强反氟化物活动主义信念的错误信息的出现和传播。从这个意义上说,先前的基于内容分析的研究表明,“无氟”一词经常与反氟化物利益相关联。

目的

本研究旨在分析有关“无氟”的推文在主题和随时间发布的频率方面的情况。

方法

通过 Twitter 应用程序编程接口检索了 2016 年 5 月至 2022 年 5 月期间用英语发布的 21,169 条包含“无氟”关键字的推文。应用潜在狄利克雷分配(LDA)主题建模来识别突出的术语和主题。通过主题间距离图计算主题之间的相似性。此外,通过使用 Elastic Stack 软件对描绘确定特定问题的每个最具代表性单词组的推文进行了手动评估。最后,针对无氟记录的每个主题的总数及其随时间的相关性进行了额外的数据可视化处理。

结果

通过应用 LDA 主题建模,我们确定了 3 个问题:“健康的生活方式”(主题 1)、“天然/有机口腔护理产品的消费”(主题 2)和“使用无氟产品/措施的建议”(主题 3)。主题 1与用户对更健康生活方式的关注以及氟化物消费的潜在影响有关,包括其假设的毒性。此外,主题 2与用户对消费天然和有机无氟口腔护理产品的个人兴趣和看法有关,而主题 3与用户对使用无氟产品(例如,从含氟牙膏改用无氟替代品)和措施(例如,饮用未氟化瓶装水而不是含氟自来水)的建议有关,包括对牙科产品的宣传。此外,无氟内容的推文数量在 2016 年至 2019 年间减少,但从 2020 年开始再次增加。

结论

公众对健康生活方式的关注,包括对天然和有机化妆品的采用,似乎是“无氟”推文最近增加的主要动机,这可以通过网络上传播的氟化物谎言来推动。因此,公共卫生当局、卫生专业人员和立法者应该意识到社交媒体上无氟内容的传播,以便为公众制定和实施针对其潜在健康危害的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9e3/10337345/5ee04f3fd86b/jmir_v25i1e44586_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验