Suppr超能文献

基于多视图深度学习的表面肌电手势识别。

Surface-Electromyography-Based Gesture Recognition by Multi-View Deep Learning.

出版信息

IEEE Trans Biomed Eng. 2019 Oct;66(10):2964-2973. doi: 10.1109/TBME.2019.2899222. Epub 2019 Feb 13.

Abstract

Gesture recognition using sparse multichannel surface electromyography (sEMG) is a challenging problem, and the solutions are far from optimal from the point of view of muscle-computer interface. In this paper, we address this problem from the context of multi-view deep learning. A novel multi-view convolutional neural network (CNN) framework is proposed by combining classical sEMG feature sets with a CNN-based deep learning model. The framework consists of two parts. In the first part, multi-view representations of sEMG are modeled in parallel by a multistream CNN, and a performance-based view construction strategy is proposed to choose the most discriminative views from classical feature sets for sEMG-based gesture recognition. In the second part, the learned multi-view deep features are fused through a view aggregation network composed of early and late fusion subnetworks, taking advantage of both early and late fusion of learned multi-view deep features. Evaluations on 11 sparse multichannel sEMG databases as well as five databases with both sEMG and inertial measurement unit data demonstrate that our multi-view framework outperforms single-view methods on both unimodal and multimodal sEMG data streams.

摘要

基于稀疏多通道表面肌电信号 (sEMG) 的手势识别是一个具有挑战性的问题,从肌电计算机接口的角度来看,现有的解决方案还远远不够理想。在本文中,我们从多视角深度学习的角度来解决这个问题。通过将经典 sEMG 特征集与基于卷积神经网络的深度学习模型相结合,提出了一种新颖的多视角卷积神经网络 (CNN) 框架。该框架由两部分组成。在第一部分中,通过多流 CNN 并行对 sEMG 的多视角表示进行建模,并提出了一种基于性能的视图构建策略,从经典特征集中选择最具判别力的视图,用于基于 sEMG 的手势识别。在第二部分中,通过由早期和晚期融合子网组成的视图聚合网络对学习到的多视角深度特征进行融合,利用学习到的多视角深度特征的早期和晚期融合。在 11 个稀疏多通道 sEMG 数据库以及 5 个同时具有 sEMG 和惯性测量单元数据的数据库上的评估表明,我们的多视角框架在单模态和多模态 sEMG 数据流上都优于单视角方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验