Suppr超能文献

基于自适应集成学习的医学图像半监督检测模型

Semi-Supervised Detection Model Based on Adaptive Ensemble Learning for Medical Images.

作者信息

Li Jingchen, Shi Haobin, Chen Wenbai, Liu Naijun, Hwang Kao-Shing

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):237-248. doi: 10.1109/TNNLS.2023.3282809. Epub 2025 Jan 7.

Abstract

Introducing deep learning technologies into the medical image processing field requires accuracy guarantee, especially for high-resolution images relayed through endoscopes. Moreover, works relying on supervised learning are powerless in the case of inadequate labeled samples. Therefore, for end-to-end medical image detection with overcritical efficiency and accuracy in endoscope detection, an ensemble-learning-based model with a semi-supervised mechanism is developed in this work. To gain a more accurate result through multiple detection models, we propose a new ensemble mechanism, termed alternative adaptive boosting method (Al-Adaboost), combining the decision-making of two hierarchical models. Specifically, the proposal consists of two modules. One is a local region proposal model with attentive temporal-spatial pathways for bounding box regression and classification, and the other one is a recurrent attention model (RAM) to provide more precise inferences for further classification according to the regression result. The proposal Al-Adaboost will adjust the weights of labeled samples and the two classifiers adaptively, and the nonlabel samples are assigned pseudolabels by our model. We investigate the performance of Al-Adaboost on both the colonoscopy and laryngoscopy data coming from CVC-ClinicDB and the affiliated hospital of Kaohsiung Medical University. The experimental results prove the feasibility and superiority of our model.

摘要

将深度学习技术引入医学图像处理领域需要保证准确性,尤其是对于通过内窥镜传输的高分辨率图像。此外,在标记样本不足的情况下,依赖监督学习的方法无能为力。因此,为了在内窥镜检测中实现极高的效率和准确性进行端到端医学图像检测,本文开发了一种具有半监督机制的基于集成学习的模型。为了通过多个检测模型获得更准确的结果,我们提出了一种新的集成机制,称为交替自适应增强方法(Al-Adaboost),它结合了两个层次模型的决策。具体来说,该方案由两个模块组成。一个是具有注意力时空路径的局部区域提议模型,用于边界框回归和分类,另一个是循环注意力模型(RAM),根据回归结果为进一步分类提供更精确的推断。所提出的Al-Adaboost将自适应地调整标记样本和两个分类器的权重,并且我们的模型为未标记样本分配伪标签。我们在来自CVC-ClinicDB和高雄医学大学附属医院的结肠镜检查和喉镜检查数据上研究了Al-Adaboost的性能。实验结果证明了我们模型的可行性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验