Departamento Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain.
J Chem Inf Model. 2023 Jul 10;63(13):4100-4114. doi: 10.1021/acs.jcim.3c00597. Epub 2023 Jun 20.
The Quantum Theory of Atoms in Molecules (QTAIM) provides an intuitive, yet physically sound, strategy to determine the partial charges of any chemical system relying on the topology induced by the electron density ρ() . In a previous work [ , , 014112], we introduced a machine learning (ML) model for the computation of QTAIM charges of C, H, O, and N atoms at a fraction of the conventional computational cost. Unfortunately, the independent nature of the atomistic predictions implies that the raw atomic charges may not necessarily reconstruct the exact molecular charge, limiting the applicability of the latter in the chemistry realm. Trying to solve such an inconvenience, we introduce NNAIMGUI, a user-friendly code which combines the inferring abilities of ML with an equilibration strategy to afford adequately behaved partial charges. The performance of this approach is put to the test in a variety of scenarios including interpolation and extrapolation regimes (e.g chemical reactions) as well as large systems. The results of this work prove that the equilibrated charges retain the chemically accurate behavior reproduced by the ML models. Furthermore, NNAIMGUI is a fully flexible architecture allowing users to train and use tailor-made models targeted at any atomic property of choice. In this way, the GUI-interfaced code, equipped with visualization utilities, makes the computation of real-space atomic properties much more appealing and intuitive, paving the way toward the extension of QTAIM related descriptors beyond the theoretical chemistry community.
分子中的原子量子理论 (QTAIM) 提供了一种直观而又合理的策略,可根据电子密度 ρ() 诱导的拓扑结构来确定任何化学系统的部分电荷。在之前的工作中[1,2,014112],我们引入了一种机器学习 (ML) 模型,可在常规计算成本的一小部分内计算 C、H、O 和 N 原子的 QTAIM 电荷。不幸的是,原子预测的独立性意味着原始原子电荷不一定能重建精确的分子电荷,从而限制了后者在化学领域的适用性。为了解决这一不便,我们引入了 NNAIMGUI,这是一个用户友好的代码,它将 ML 的推断能力与平衡策略结合起来,以提供行为适当的部分电荷。该方法的性能在各种情况下进行了测试,包括插值和外推(例如化学反应)以及大型系统。这项工作的结果证明,平衡电荷保留了 ML 模型所再现的化学准确性。此外,NNAIMGUI 是一个完全灵活的架构,允许用户训练和使用针对任何所需原子特性的定制模型。通过这种方式,具有可视化实用程序的 GUI 界面代码使计算真实空间原子特性更加吸引人且直观,为 QTAIM 相关描述符在理论化学界之外的扩展铺平了道路。