Suppr超能文献

通过使用机器学习从多模态数据中进行唤醒检测来增强生物反馈驱动的自我引导式虚拟现实暴露疗法。

Enhancing biofeedback-driven self-guided virtual reality exposure therapy through arousal detection from multimodal data using machine learning.

作者信息

Rahman Muhammad Arifur, Brown David J, Mahmud Mufti, Harris Matthew, Shopland Nicholas, Heym Nadja, Sumich Alexander, Turabee Zakia Batool, Standen Bradley, Downes David, Xing Yangang, Thomas Carolyn, Haddick Sean, Premkumar Preethi, Nastase Simona, Burton Andrew, Lewis James

机构信息

Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.

Medical Technologies Innovation Facility, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.

出版信息

Brain Inform. 2023 Jun 21;10(1):14. doi: 10.1186/s40708-023-00193-9.

Abstract

Virtual reality exposure therapy (VRET) is a novel intervention technique that allows individuals to experience anxiety-evoking stimuli in a safe environment, recognise specific triggers and gradually increase their exposure to perceived threats. Public-speaking anxiety (PSA) is a prevalent form of social anxiety, characterised by stressful arousal and anxiety generated when presenting to an audience. In self-guided VRET, participants can gradually increase their tolerance to exposure and reduce anxiety-induced arousal and PSA over time. However, creating such a VR environment and determining physiological indices of anxiety-induced arousal or distress is an open challenge. Environment modelling, character creation and animation, psychological state determination and the use of machine learning (ML) models for anxiety or stress detection are equally important, and multi-disciplinary expertise is required. In this work, we have explored a series of ML models with publicly available data sets (using electroencephalogram and heart rate variability) to predict arousal states. If we can detect anxiety-induced arousal, we can trigger calming activities to allow individuals to cope with and overcome distress. Here, we discuss the means of effective selection of ML models and parameters in arousal detection. We propose a pipeline to overcome the model selection problem with different parameter settings in the context of virtual reality exposure therapy. This pipeline can be extended to other domains of interest where arousal detection is crucial. Finally, we have implemented a biofeedback framework for VRET where we successfully provided feedback as a form of heart rate and brain laterality index from our acquired multimodal data for psychological intervention to overcome anxiety.

摘要

虚拟现实暴露疗法(VRET)是一种新型干预技术,它使个体能够在安全环境中体验引发焦虑的刺激,识别特定触发因素,并逐渐增加对感知到的威胁的暴露程度。公开演讲焦虑(PSA)是社交焦虑的一种普遍形式,其特征是在向观众展示时产生的压力性唤醒和焦虑。在自我引导的VRET中,参与者可以逐渐提高对暴露的耐受性,并随着时间的推移减少焦虑引起的唤醒和PSA。然而,创建这样的虚拟现实环境并确定焦虑引起的唤醒或痛苦的生理指标是一个开放的挑战。环境建模、角色创建与动画制作、心理状态确定以及使用机器学习(ML)模型进行焦虑或压力检测同样重要,并且需要多学科专业知识。在这项工作中,我们使用公开可用的数据集(利用脑电图和心率变异性)探索了一系列ML模型,以预测唤醒状态。如果我们能够检测到焦虑引起的唤醒,就可以触发平静活动,使个体能够应对并克服痛苦。在此,我们讨论了在唤醒检测中有效选择ML模型和参数的方法。我们提出了一个流程,以克服虚拟现实暴露疗法背景下不同参数设置的模型选择问题。该流程可以扩展到唤醒检测至关重要的其他感兴趣领域。最后,我们为VRET实现了一个生物反馈框架,在其中我们成功地从获取的多模态数据中提供了心率和脑偏侧指数形式的反馈,用于心理干预以克服焦虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c3/10284788/fe0aed771514/40708_2023_193_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验