Department of Cell Biology at The Arthur and Sonia Labatt Brain Tumour Research Centre at the Hospital for Sick Children, Toronto, Ontario, Canada.
Molecular Imaging Branch, National Cancer Institute, Bethesda, Maryland; Artificial Intelligence Resource, National Cancer Institute, Bethesda, Maryland.
Mod Pathol. 2023 Oct;36(10):100241. doi: 10.1016/j.modpat.2023.100241. Epub 2023 Jun 19.
Phosphatase and tensin homolog (PTEN) loss is associated with adverse outcomes in prostate cancer and can be measured via immunohistochemistry. The purpose of the study was to establish the clinical application of an in-house developed artificial intelligence (AI) image analysis workflow for automated detection of PTEN loss on digital images for identifying patients at risk of early recurrence and metastasis. Postsurgical tissue microarray sections from the Canary Foundation (n = 1264) stained with anti-PTEN antibody were evaluated independently by pathologist conventional visual scoring (cPTEN) and an automated AI-based image analysis pipeline (AI-PTEN). The relationship of PTEN evaluation methods with cancer recurrence and metastasis was analyzed using multivariable Cox proportional hazard and decision curve models. Both cPTEN scoring by the pathologist and quantification of PTEN loss by AI (high-risk AI-qPTEN) were significantly associated with shorter metastasis-free survival (MFS) in univariable analysis (cPTEN hazard ratio [HR], 1.54; CI, 1.07-2.21; P = .019; AI-qPTEN HR, 2.55; CI, 1.83-3.56; P < .001). In multivariable analyses, AI-qPTEN showed a statistically significant association with shorter MFS (HR, 2.17; CI, 1.49-3.17; P < .001) and recurrence-free survival (HR, 1.36; CI, 1.06-1.75; P = .016) when adjusting for relevant postsurgical clinical nomogram (Cancer of the Prostate Risk Assessment [CAPRA] postsurgical score [CAPRA-S]), whereas cPTEN does not show a statistically significant association (HR, 1.33; CI, 0.89-2; P = .2 and HR, 1.26; CI, 0.99-1.62; P = .063, respectively) when adjusting for CAPRA-S risk stratification. More importantly, AI-qPTEN was associated with shorter MFS in patients with favorable pathological stage and negative surgical margins (HR, 2.72; CI, 1.46-5.06; P = .002). Workflow also demonstrated enhanced clinical utility in decision curve analysis, more accurately identifying men who might benefit from adjuvant therapy postsurgery. This study demonstrates the clinical value of an affordable and fully automated AI-powered PTEN assessment for evaluating the risk of developing metastasis or disease recurrence after radical prostatectomy. Adding the AI-qPTEN assessment workflow to clinical variables may affect postoperative surveillance or management options, particularly in low-risk patients.
磷酸酶张力蛋白同系物(PTEN)缺失与前列腺癌的不良预后相关,可以通过免疫组织化学进行测量。本研究旨在建立一种内部开发的人工智能(AI)图像分析工作流程的临床应用,以自动检测数字图像中的 PTEN 缺失,从而识别有早期复发和转移风险的患者。对来自 Canary 基金会(n=1264)的手术后组织微阵列切片用抗 PTEN 抗体进行染色,由病理学家进行传统的视觉评分(cPTEN)和基于 AI 的自动图像分析流水线(AI-PTEN)进行独立评估。使用多变量 Cox 比例风险和决策曲线模型分析 PTEN 评估方法与癌症复发和转移的关系。在单变量分析中,cPTEN 评分和 AI 量化的 PTEN 缺失(高风险 AI-qPTEN)均与较短的无转移生存期(MFS)显著相关(cPTEN HR,1.54;CI,1.07-2.21;P=0.019;AI-qPTEN HR,2.55;CI,1.83-3.56;P<0.001)。在多变量分析中,当调整相关术后临床列线图(前列腺癌风险评估 [CAPRA] 术后评分 [CAPRA-S])时,AI-qPTEN 与较短的 MFS(HR,2.17;CI,1.49-3.17;P<0.001)和无复发生存期(HR,1.36;CI,1.06-1.75;P=0.016)显著相关,而 cPTEN 不显示与 CAPRA-S 风险分层相关的统计学显著相关性(HR,1.33;CI,0.89-2;P=0.2 和 HR,1.26;CI,0.99-1.62;P=0.063)。更重要的是,AI-qPTEN 与病理分期良好和手术切缘阴性的患者的较短 MFS 相关(HR,2.72;CI,1.46-5.06;P=0.002)。该工作流程还在决策曲线分析中显示出增强的临床实用性,更准确地识别出可能从术后辅助治疗中受益的男性。这项研究表明,一种负担得起且完全自动化的基于 AI 的 PTEN 评估对于评估根治性前列腺切除术后发生转移或疾病复发的风险具有临床价值。将 AI-qPTEN 评估工作流程添加到临床变量中可能会影响术后监测或管理选择,特别是在低风险患者中。