Suppr超能文献

利用人工智能对组织微阵列中的生物标志物进行高通量评估:多中心前列腺癌队列中 PTEN 缺失作为原理验证。

High throughput assessment of biomarkers in tissue microarrays using artificial intelligence: PTEN loss as a proof-of-principle in multi-center prostate cancer cohorts.

机构信息

Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

出版信息

Mod Pathol. 2021 Feb;34(2):478-489. doi: 10.1038/s41379-020-00674-w. Epub 2020 Sep 3.

Abstract

Phosphatase and tensin homolog (PTEN) loss is associated with adverse outcomes in prostate cancer and has clinical potential as a prognostic biomarker. The objective of this work was to develop an artificial intelligence (AI) system for automated detection and localization of PTEN loss on immunohistochemically (IHC) stained sections. PTEN loss was assessed using IHC in two prostate tissue microarrays (TMA) (internal cohort, n = 272 and external cohort, n = 129 patients). TMA cores were visually scored for PTEN loss by pathologists and, if present, spatially annotated. Cores from each patient within the internal TMA cohort were split into 90% cross-validation (N = 2048) and 10% hold-out testing (N = 224) sets. ResNet-101 architecture was used to train core-based classification using a multi-resolution ensemble approach (×5, ×10, and ×20). For spatial annotations, single resolution pixel-based classification was trained from patches extracted at ×20 resolution, interpolated to ×40 resolution, and applied in a sliding-window fashion. A final AI-based prediction model was created from combining multi-resolution and pixel-based models. Performance was evaluated in 428 cores of external cohort. From both cohorts, a total of 2700 cores were studied, with a frequency of PTEN loss of 14.5% in internal (180/1239) and external 13.5% (43/319) cancer cores. The final AI-based prediction of PTEN status demonstrated 98.1% accuracy (95.0% sensitivity, 98.4% specificity; median dice score = 0.811) in internal cohort cross-validation set and 99.1% accuracy (100% sensitivity, 99.0% specificity; median dice score = 0.804) in internal cohort test set. Overall core-based classification in the external cohort was significantly improved in the external cohort (area under the curve = 0.964, 90.6% sensitivity, 95.7% specificity) when further trained (fine-tuned) using 15% of cohort data (19/124 patients). These results demonstrate a robust and fully automated method for detection and localization of PTEN loss in prostate cancer tissue samples. AI-based algorithms have potential to streamline sample assessment in research and clinical laboratories.

摘要

磷酸酶和张力蛋白同源物(PTEN)缺失与前列腺癌的不良预后相关,并具有作为预后生物标志物的临床潜力。本研究旨在开发一种用于自动检测和定位免疫组织化学(IHC)染色切片中 PTEN 缺失的人工智能(AI)系统。使用 IHC 在两个前列腺组织微阵列(TMA)(内部队列,n=272 例;外部队列,n=129 例)中评估 PTEN 缺失。病理学家对 TMA 核心进行视觉评分以评估 PTEN 缺失,如果存在,则进行空间注释。内部 TMA 队列中每位患者的核心分为 90%的交叉验证(N=2048)和 10%的保留测试(N=224)集。使用 ResNet-101 架构通过多分辨率集成方法(×5、×10 和×20)基于核心进行分类训练。对于空间注释,从 ×20 分辨率提取的补丁中训练单分辨率像素分类,插值到 ×40 分辨率,并以滑动窗口方式应用。从多分辨率和像素分类模型组合创建最终的基于 AI 的预测模型。在外部队列的 428 个核心中评估性能。从两个队列共研究了 2700 个核心,内部队列的 PTEN 缺失频率为 14.5%(180/1239),外部队列为 13.5%(43/319)。内部队列交叉验证集的最终基于 AI 的 PTEN 状态预测显示 98.1%的准确率(95.0%的敏感性,98.4%的特异性;中位数 Dice 评分=0.811),内部队列测试集的准确率为 99.1%(100%的敏感性,99.0%的特异性;中位数 Dice 评分=0.804)。在进一步使用队列数据的 15%(124 例患者中的 19 例)进行训练(微调)后,外部队列的整体基于核心的分类得到了显著改善(曲线下面积=0.964,90.6%的敏感性,95.7%的特异性)。这些结果表明,在前列腺癌组织样本中检测和定位 PTEN 缺失的方法具有稳健性和完全自动化。基于 AI 的算法有可能简化研究和临床实验室的样本评估。

相似文献

引用本文的文献

3
Artificial intelligence in prostate cancer.前列腺癌中的人工智能
Chin Med J (Engl). 2025 Aug 5;138(15):1769-1782. doi: 10.1097/CM9.0000000000003689. Epub 2025 Jul 9.
4
Harnessing artificial intelligence for prostate cancer management.利用人工智能进行前列腺癌管理。
Cell Rep Med. 2024 Apr 16;5(4):101506. doi: 10.1016/j.xcrm.2024.101506. Epub 2024 Apr 8.

本文引用的文献

2
Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline.局部前列腺癌的分子生物标志物:ASCO 指南。
J Clin Oncol. 2020 May 1;38(13):1474-1494. doi: 10.1200/JCO.19.02768. Epub 2019 Dec 12.
6
Mechanisms of PTEN loss in cancer: It's all about diversity.PTEN 缺失在癌症中的机制:多样性是关键。
Semin Cancer Biol. 2019 Dec;59:66-79. doi: 10.1016/j.semcancer.2019.02.001. Epub 2019 Feb 7.
10
PTEN status assessment in the Johns Hopkins active surveillance cohort.PTEN 状态评估在约翰霍普金斯主动监测队列中。
Prostate Cancer Prostatic Dis. 2019 Mar;22(1):176-181. doi: 10.1038/s41391-018-0093-2. Epub 2018 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验