Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China.
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China.
Nat Rev Microbiol. 2023 Nov;21(11):705-718. doi: 10.1038/s41579-023-00920-3. Epub 2023 Jun 21.
A wide diversity of microorganisms, typically growing as biofilms, has been implicated in corrosion, a multi-trillion dollar a year problem. Aerobic microorganisms establish conditions that promote metal corrosion, but most corrosion has been attributed to anaerobes. Microbially produced organic acids, sulfide and extracellular hydrogenases can accelerate metallic iron (Fe) oxidation coupled to hydrogen (H) production, as can respiratory anaerobes consuming H as an electron donor. Some bacteria and archaea directly accept electrons from Fe to support anaerobic respiration, often with c-type cytochromes as the apparent outer-surface electrical contact with the metal. Functional genetic studies are beginning to define corrosion mechanisms more rigorously. Omics studies are revealing which microorganisms are associated with corrosion, but new strategies for recovering corrosive microorganisms in culture are required to evaluate corrosive capabilities and mechanisms. Interdisciplinary studies of the interactions among microorganisms and between microorganisms and metals in corrosive biofilms show promise for developing new technologies to detect and prevent corrosion. In this Review, we explore the role of microorganisms in metal corrosion and discuss potential ways to mitigate it.
多种多样的微生物,通常以生物膜的形式存在,被认为与腐蚀有关,这是一个每年价值数万亿美元的问题。需氧微生物创造了促进金属腐蚀的条件,但大多数腐蚀归因于厌氧菌。微生物产生的有机酸、硫化物和细胞外氢化酶可以加速与氢(H)生产耦合的金属铁(Fe)氧化,而消耗 H 作为电子供体的呼吸厌氧菌也可以加速这一过程。一些细菌和古菌可以直接从 Fe 中接受电子以支持无氧呼吸,通常以 c 型细胞色素作为与金属的明显外表面电接触。功能基因研究开始更严格地定义腐蚀机制。组学研究揭示了哪些微生物与腐蚀有关,但需要新的策略来恢复腐蚀性微生物的培养,以评估其腐蚀性能力和机制。微生物之间以及微生物与腐蚀性生物膜中金属之间相互作用的跨学科研究为开发检测和预防腐蚀的新技术展示了前景。在这篇综述中,我们探讨了微生物在金属腐蚀中的作用,并讨论了潜在的缓解方法。