Suppr超能文献

基于共聚焦显微镜的正常和梗死心脏电传导计算模型参数估计

Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart.

作者信息

Greiner Joachim, Sankarankutty Aparna C, Seemann Gunnar, Seidel Thomas, Sachse Frank B

机构信息

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.

Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

Front Physiol. 2018 Apr 4;9:239. doi: 10.3389/fphys.2018.00239. eCollection 2018.

Abstract

Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. +, + ++, + ++, + +. Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.

摘要

计算建模是增进我们对心脏病及其潜在机制认识的重要工具。心脏组织传导的计算模型需要确定参数。我们对这些参数的了解有限,尤其是对于患病组织。在此,我们评估并量化了心脏组织传导计算建模的参数。我们使用心肌梗死(MI)兔模型和基于成像的方法来推导这些参数。从MI边界200μm(区域1)、250 - 750μm(区域2)和1000 - 1250μm(区域3)内的固定对照心脏(动物:5只)和梗死心脏(动物:6只)获取左心室组织样本。我们通过多标记染色方案评估细胞外空间、成纤维细胞、平滑肌细胞、细胞核和缝隙连接。利用共聚焦显微镜,我们获取了体素大小为200×200×200nm的三维(3D)图像堆栈。图像分割产生了组织微观结构的3D重建,用于数值推导细胞外电导率张量。对照中肌细胞、细胞外、层间裂隙、血管和成纤维细胞区域的体积分数分别为(%)65.03±3.60、24.68±3.05、3.95±4.84、7.71±2.15和2.48±1.11。区域1和2中肌细胞、肌成纤维细胞、血管和细胞外区域的体积分数不同。纤维化定义为纤维化组织成分增加,在MI区域1、2和3中分别为(%)21.21±1.73、16.90±9.86和3.58±8.64。对于对照组织,基于图像计算的纵向、横向和法向细胞外电导率分别为(S/m)0.36±0.11、0.17±0.07和0.1±0.06。 +, + ++, + ++, + +。包括层间裂隙在内的细胞外空间体积分数与对照和MI心脏中的电导率密切相关。我们的研究为正常和MI心脏传导的计算建模提供了新的定量数据。值得注意的是,我们的研究在微观尺度上引入了关于MI边界区域组织组成和细胞外电导率的综合统计信息。我们认为所呈现的数据填补了建模参数方面的重大空白,并扩展了我们进行心脏传导计算建模的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79be/5893725/681f298c5c57/fphys-09-00239-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验