Dogan Elvan, Bhusal Anant, Cecen Berivan, Miri Amir K
Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States.
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States.
Appl Mater Today. 2020 Sep;20. doi: 10.1016/j.apmt.2020.100752. Epub 2020 Jul 30.
The rapid growth and disruptive potentials of three-dimensional (3D) printing demand further research for addressing fundamental fabrication concepts and enabling engineers to realize the capabilities of 3D printing technologies. There is a trend to use these capabilities to develop materials that derive some of their properties via their structural organization rather than their intrinsic constituents, sometimes referred to as mechanical metamaterials. Such materials show qualitatively different mechanical behaviors despite using the same material composition, such as ultra-lightweight, super-elastic, and auxetic structures. In this work, we review current advancements in the design and fabrication of multi-scale advanced structures with properties heretofore unseen in well-established materials. We classify the fabrication methods as conventional methods, additive manufacturing techniques, and 4D printing. Following a comprehensive comparison of different fabrication methods, we suggest some guidelines on the selection of fabrication parameters to construct meta-biomaterials for tissue engineering. The parameters include multi-material capacity, fabrication resolution, prototyping speed, and biological compatibility.
三维(3D)打印的快速发展及其潜在的颠覆性影响,要求我们进一步开展研究,以解决基本的制造概念问题,并使工程师能够实现3D打印技术的各项功能。目前有一种趋势,即利用这些功能来开发一些材料,这些材料的某些特性是通过其结构组织而非内在成分获得的,这类材料有时被称为机械超材料。尽管使用相同的材料成分,但这类材料却表现出性质截然不同的力学行为,如超轻结构、超弹性结构和负泊松比结构。在这项工作中,我们回顾了多尺度先进结构设计与制造方面的当前进展,这些结构具有一些在成熟材料中前所未见的特性。我们将制造方法分为传统方法、增材制造技术和4D打印。在对不同制造方法进行全面比较之后,我们针对选择制造参数以构建用于组织工程的超材料提出了一些指导原则。这些参数包括多材料能力、制造分辨率、原型制作速度和生物相容性。