Suppr超能文献

用于乳腺癌定量光声计算机断层成像的随机三维数值体模。

Stochastic three-dimensional numerical phantoms to enable computational studies in quantitative optoacoustic computed tomography of breast cancer.

机构信息

University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States.

The University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, Austin, Texas, United States.

出版信息

J Biomed Opt. 2023 Jun;28(6):066002. doi: 10.1117/1.JBO.28.6.066002. Epub 2023 Jun 20.

Abstract

SIGNIFICANCE

When developing a new quantitative optoacoustic computed tomography (OAT) system for diagnostic imaging of breast cancer, objective assessments of various system designs through human trials are infeasible due to cost and ethical concerns. In prototype stages, however, different system designs can be cost-efficiently assessed via virtual imaging trials (VITs) employing ensembles of digital breast phantoms, i.e., numerical breast phantoms (NBPs), that convey clinically relevant variability in anatomy and optoacoustic tissue properties.

AIM

The aim is to develop a framework for generating ensembles of realistic three-dimensional (3D) anatomical, functional, optical, and acoustic NBPs and numerical lesion phantoms (NLPs) for use in VITs of OAT applications in the diagnostic imaging of breast cancer.

APPROACH

The generation of the anatomical NBPs was accomplished by extending existing NBPs developed by the U.S. Food and Drug Administration. As these were designed for use in mammography applications, substantial modifications were made to improve blood vasculature modeling for use in OAT. The NLPs were modeled to include viable tumor cells only or a combination of viable tumor cells, necrotic core, and peripheral angiogenesis region. Realistic optoacoustic tissue properties were stochastically assigned in the NBPs and NLPs.

RESULTS

To advance optoacoustic and optical imaging research, 84 datasets have been released; these consist of anatomical, functional, optical, and acoustic NBPs and the corresponding simulated multi-wavelength optical fluence, initial pressure, and OAT measurements. The generated NBPs were compared with clinical data with respect to the volume of breast blood vessels and spatially averaged effective optical attenuation. The usefulness of the proposed framework was demonstrated through a case study to investigate the impact of acoustic heterogeneity on OAT images of the breast.

CONCLUSIONS

The proposed framework will enhance the authenticity of virtual OAT studies and can be widely employed for the investigation and development of advanced image reconstruction and machine learning-based methods, as well as the objective evaluation and optimization of the OAT system designs.

摘要

意义

在开发用于乳腺癌诊断成像的新型定量光声计算机断层扫描(OAT)系统时,由于成本和道德问题,通过人体试验对各种系统设计进行客观评估是不可行的。然而,在原型阶段,可以通过使用数字乳房体模(NBP)的集合来进行虚拟成像试验(VIT),从而以具有成本效益的方式评估不同的系统设计,即数字乳房体模(NBP)可传达解剖结构和光声组织特性方面的临床相关变异性。

目的

目的是开发一种用于生成真实三维(3D)解剖学、功能性、光学和声学 NBP 以及数值病变体模(NLP)集合的框架,以便在用于乳腺癌诊断成像的 OAT 应用的 VIT 中使用。

方法

通过扩展美国食品和药物管理局开发的现有 NBP 来完成解剖 NBP 的生成。由于这些 NBP 是专为乳房 X 光摄影应用而设计的,因此进行了大量修改以改善用于 OAT 的血管建模。NLP 被建模为仅包含存活的肿瘤细胞或存活的肿瘤细胞、坏死核心和外周血管生成区域的组合。在 NBP 和 NLP 中随机分配了真实的光声组织特性。

结果

为了推进光声和光学成像研究,已经发布了 84 个数据集;这些数据集包括解剖学、功能性、光学和声学 NBP 以及相应的模拟多波长光荧光、初始压力和 OAT 测量。将生成的 NBP 与临床数据进行了比较,涉及乳房血管的体积和空间平均有效光衰减。通过案例研究来研究声学异质性对乳房 OAT 图像的影响,证明了所提出框架的有用性。

结论

所提出的框架将增强虚拟 OAT 研究的真实性,并可广泛用于先进的图像重建和基于机器学习的方法的研究和开发,以及 OAT 系统设计的客观评估和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f5a/10281048/e11730a7e6d9/JBO-028-066002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验