Suppr超能文献

优化定量光声成像系统:贝叶斯克拉美罗界方法。

Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach.

作者信息

Scope Crafts Evan, Anastasio Mark A, Villa Umberto

机构信息

Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, United States of America.

Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.

出版信息

Inverse Probl. 2024 Dec 1;40(12):125012. doi: 10.1088/1361-6420/ad910a. Epub 2024 Nov 20.

Abstract

Quantitative photoacoustic computed tomography (qPACT) is an emerging medical imaging modality that carries the promise of high-contrast, fine-resolution imaging of clinically relevant quantities like hemoglobin concentration and blood-oxygen saturation. However, qPACT image reconstruction is governed by a multiphysics, partial differential equation (PDE) based inverse problem that is highly non-linear and severely ill-posed. Compounding the difficulty of the problem is the lack of established design standards for qPACT imaging systems, as there is currently a proliferation of qPACT system designs for various applications and it is unknown which ones are optimal or how to best modify the systems under various design constraints. This work introduces a novel computational approach for the optimal experimental design of qPACT imaging systems based on the Bayesian Cramér-Rao bound (CRB). Our approach incorporates several techniques to address challenges associated with forming the bound in the infinite-dimensional function space setting of qPACT, including priors with trace-class covariance operators and the use of the variational adjoint method to compute derivatives of the log-likelihood function needed in the bound computation. The resulting Bayesian CRB based design metric is computationally efficient and independent of the choice of estimator used to solve the inverse problem. The efficacy of the bound in guiding experimental design was demonstrated in a numerical study of qPACT design schemes under a stylized two-dimensional imaging geometry. To the best of our knowledge, this is the first work to propose Bayesian CRB based design for systems governed by PDEs.

摘要

定量光声计算机断层扫描(qPACT)是一种新兴的医学成像模态,有望对血红蛋白浓度和血氧饱和度等临床相关量进行高对比度、高分辨率成像。然而,qPACT图像重建受基于多物理场、偏微分方程(PDE)的反问题支配,该问题高度非线性且严重不适定。使问题更加复杂的是,qPACT成像系统缺乏既定的设计标准,因为目前针对各种应用的qPACT系统设计繁多,尚不清楚哪些是最优的,也不知道如何在各种设计约束下对系统进行最佳修改。这项工作介绍了一种基于贝叶斯克拉美罗界(CRB)的qPACT成像系统最优实验设计的新颖计算方法。我们的方法采用了多种技术来应对在qPACT的无限维函数空间设置中形成该界所面临的挑战,包括具有迹类协方差算子的先验以及使用变分伴随方法来计算界计算中所需的对数似然函数的导数。由此产生的基于贝叶斯CRB的设计指标计算效率高,且与用于解决反问题的估计器选择无关。在一个二维成像几何模型下的qPACT设计方案数值研究中,证明了该界在指导实验设计方面的有效性。据我们所知,这是第一项针对由PDE支配的系统提出基于贝叶斯CRB设计的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c46/11577155/75fe74f01aff/ipad910af1_hr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验