School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK.
Essex County Council, Chelmsford, UK.
J Athl Train. 2024 Mar 1;59(3):317-324. doi: 10.4085/1062-6050-0532.22.
Cold-water immersion (CWI) has been reported to reduce tissue metabolism postimmersion, but physiological data are lacking regarding the muscle metabolic response to its application. Near-infrared spectroscopy (NIRS) is a noninvasive optical technique that can inform muscle hemodynamics and tissue metabolism.
To investigate the effects of CWI at 2 water temperatures (10°C and 15°C) on NIRS-calculated measurements of muscle oxygen consumption (mVO2).
Crossover study.
University sports rehabilitation center.
A total of 11 male National Collegiate Athletic Association Division II long-distance runners (age = 23.4 ± 3.4 years, height = 1.8 ± 0.1 m, mass = 68.8 ± 10.7 kg, mean adipose tissue thickness = 6.7 ± 2.7 mm).
INTERVENTION(S): Cold-water immersion at 10°C and 15°C for 20 minutes.
MAIN OUTCOME MEASURE(S): We calculated mVO2 preimmersion and postimmersion at water temperatures of 10°C and 15°C. Changes in tissue oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), total hemoglobin (tHb), hemoglobin difference (Hbdiff), and tissue saturation index (TSI %) were measured during the 20-minute immersion at both temperatures.
We observed a decrease in mVO2 after immersion at both 10°C and 15°C (F1,9 = 27.7801, P = .001). During the 20-minute immersion at both temperatures, we noted a main effect of time for O2Hb (F3,27 = 14.227, P = .001), HHb (F3,27 = 5.749, P = .009), tHb (F3,27 = 24.786, P = .001), and Hbdiff (F3,27 = 3.894, P = .020), in which values decreased over the course of immersion. Post hoc pairwise comparisons showed that these changes occurred within the final 5 minutes of immersion for tHb and O2Hb.
A 20-minute CWI at 10°C and 15°C led to a reduction in mVO2. This was greater after immersion at 10°C. The reduction in mVO2 suggests a decrease in muscle metabolic activity (ie, O2 use after CWI). Calculating mVO2 via the NIRS-occlusion technique may offer further insight into muscle metabolic responses beyond what is attainable from observing the NIRS primary signals.
冷水浸泡已被报道可降低浸泡后组织的新陈代谢,但关于其应用对肌肉代谢反应的生理数据尚缺乏。近红外光谱(NIRS)是一种非侵入性的光学技术,可提供肌肉血液动力学和组织代谢的信息。
研究两种水温(10°C 和 15°C)下冷水浸泡对 NIRS 计算的肌肉耗氧量(mVO2)的影响。
交叉研究。
大学运动康复中心。
共 11 名美国全国大学生体育协会二级长跑运动员(年龄=23.4±3.4 岁,身高=1.8±0.1 m,体重=68.8±10.7 kg,平均脂肪组织厚度=6.7±2.7 mm)。
10°C 和 15°C 的冷水浸泡 20 分钟。
在水温为 10°C 和 15°C 时计算浸泡前和浸泡后的 mVO2。在两种温度下的 20 分钟浸泡过程中测量组织氧合血红蛋白(O2Hb)、去氧血红蛋白(HHb)、总血红蛋白(tHb)、血红蛋白差(Hbdiff)和组织饱和度指数(TSI%)的变化。
我们观察到在 10°C 和 15°C 浸泡后 mVO2 下降(F1,9 = 27.7801,P =.001)。在两种温度下的 20 分钟浸泡过程中,我们观察到时间对 O2Hb(F3,27 = 14.227,P =.001)、HHb(F3,27 = 5.749,P =.009)、tHb(F3,27 = 24.786,P =.001)和 Hbdiff(F3,27 = 3.894,P =.020)有主要的时间效应,这些值在浸泡过程中逐渐下降。事后两两比较显示,这些变化发生在 tHb 和 O2Hb 的最后 5 分钟内。
10°C 和 15°C 的 20 分钟冷水浸泡导致 mVO2 降低。10°C 浸泡后降幅更大。mVO2 的降低表明肌肉代谢活动减少(即冷水浸泡后肌肉对氧气的利用减少)。通过 NIRS 闭塞技术计算 mVO2 可能会提供比观察 NIRS 主要信号更深入的肌肉代谢反应信息。