Suppr超能文献

聚类方法概述及在心理健康研究中的应用指南。

An overview of clustering methods with guidelines for application in mental health research.

作者信息

Gao Caroline X, Dwyer Dominic, Zhu Ye, Smith Catherine L, Du Lan, Filia Kate M, Bayer Johanna, Menssink Jana M, Wang Teresa, Bergmeir Christoph, Wood Stephen, Cotton Sue M

机构信息

Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia; Department of Epidemiology and Preventative Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia.

出版信息

Psychiatry Res. 2023 Sep;327:115265. doi: 10.1016/j.psychres.2023.115265. Epub 2023 May 27.

Abstract

Cluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are subsequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general guidance on clustering workflow and reporting requirements. To facilitate the implementation of different algorithms, we provide information on R functions and libraries.

摘要

聚类分析已广泛应用于心理健康研究,通过识别个体间更同质的亚组来分解个体间的异质性。然而,尽管新算法取得了进展且越来越受欢迎,但在模型选择、分析框架和报告要求方面几乎没有指导。在本文中,我们旨在通过介绍在心理健康研究中特别相关的主要算法的原理、设计、优缺点及实现方法来弥补这一差距。随后介绍了基本模型的扩展,如核方法、深度学习、半监督聚类和聚类集成。然后讨论了如何选择算法来解决常见问题以及聚类前数据处理、聚类评估和验证的方法。重要的是,我们还提供了关于聚类工作流程和报告要求的一般指导。为便于不同算法的实现,我们提供了R函数和库的相关信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验