Sojo-Gordillo Jose M, Kaur Yashpreet, Tachikawa Saeko, Alayo Nerea, Salleras Marc, Forrer Nicolas, Fonseca Luis, Morata Alex, Tarancón Albert, Zardo Ilaria
Catalonia Institute for Energy Research, IREC, Jardins de les Dones de Negre 1, 08930, Sant Adrià de Besòs, Barcelona, Spain.
University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
Nanoscale Horiz. 2024 Jun 24;9(7):1200-1210. doi: 10.1039/d4nh00114a.
Nanostructured materials present improved thermoelectric properties due to non-trivial effects at the nanoscale. However, the characterization of individual nanostructures, especially from the thermal point of view, is still an unsolved topic. This work presents the complete structural, morphological, and thermoelectrical evaluation of the selfsame individual bottom-up integrated nanowire employing an innovative micro-machined device compatible with transmission electron microscopy whose fabrication is also discussed. Thanks to a design that arranges the nanostructured samples completely suspended, detailed structural analysis using transmission electron microscopy is enabled. In the same device architecture, electrical collectors and isolated heaters are available at both ends of the trenches for thermoelectrical measurements of the nanowire thermal and electrical properties simultaneously. This allows the direct measurement of the nanowire power factor. Furthermore, micro-Raman thermometry measurements were performed to evaluate the thermal conductivity of the same suspended silicon nanowire. A thermal profile of the self-heating nanowire could be spatially resolved and used to compute the thermal conductivity. In this work, heavily-doped silicon nanowires were grown on this microdevices yielding a thermal conductivity of 30.8 ± 1.7 W Km and a power factor of 2.8 mW mK at an average nanowire temperature of 400 K. Notably, no thermal contact resistance was observed between the nanowire and the bulk, confirming the epitaxial attachment. The device presented here shows remarkable utility in the challenging thermoelectrical characterization of integrated nanostructures and in the development of multiple devices such as thermoelectric generators.
由于纳米尺度上的非平凡效应,纳米结构材料呈现出改善的热电性能。然而,单个纳米结构的表征,尤其是从热学角度来看,仍然是一个未解决的课题。这项工作展示了对同一根自下而上集成的纳米线进行完整的结构、形态和热电性能评估,采用了一种与透射电子显微镜兼容的创新微加工器件,同时还讨论了其制造方法。得益于一种将纳米结构样品完全悬浮的设计,使得能够使用透射电子显微镜进行详细的结构分析。在同一器件架构中,沟槽两端设有电收集器和隔离加热器,用于同时对纳米线的热学和电学性能进行热电测量。这使得能够直接测量纳米线的功率因子。此外,还进行了显微拉曼热成像测量,以评估同一根悬浮硅纳米线的热导率。可以在空间上分辨出自热纳米线的热分布,并用于计算热导率。在这项工作中,在这种微器件上生长了重掺杂硅纳米线,在平均纳米线温度为400K时,热导率为30.8±1.7W/(Km),功率因子为2.8mW/(m²K²)。值得注意的是,在纳米线与块体之间未观察到热接触电阻,证实了外延附着。这里展示的器件在集成纳米结构具有挑战性的热电表征以及诸如热电发电机等多种器件的开发中显示出显著的实用性。