George Renee, Ellis Benjamin, West Andrew, Graff Alex, Weaver Stephen, Abramowski Michelle, Brown Katelin, Kerr Lauren, Lu Sheng-Chieh, Swisher Christine, Sidey-Gibbons Chris
The Ronin Project, San Mateo, CA, USA.
Section of Patient-Centered Analytic, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Commun Med (Lond). 2023 Jun 22;3(1):88. doi: 10.1038/s43856-023-00317-6.
Cancer patients often experience treatment-related symptoms which, if uncontrolled, may require emergency department admission. We developed models identifying breast or genitourinary cancer patients at the risk of attending emergency department (ED) within 30-days and demonstrated the development, validation, and proactive approach to in-production monitoring of an artificial intelligence-based predictive model during a 3-month simulated deployment at a cancer hospital in the United States.
We used routinely-collected electronic health record data to develop our predictive models. We evaluated models including a variational autoencoder k-nearest neighbors algorithm (VAE-kNN) and model behaviors with a sample containing 84,138 observations from 28,369 patients. We assessed the model during a 77-day production period exposure to live data using a proactively monitoring process with predefined metrics.
Performance of the VAE-kNN algorithm is exceptional (Area under the receiver-operating characteristics, AUC = 0.80) and remains stable across demographic and disease groups over the production period (AUC 0.74-0.82). We can detect issues in data feeds using our monitoring process to create immediate insights into future model performance.
Our algorithm demonstrates exceptional performance at predicting risk of 30-day ED visits. We confirm that model outputs are equitable and stable over time using a proactive monitoring approach.
癌症患者经常经历与治疗相关的症状,如果这些症状得不到控制,可能需要急诊入院。我们开发了模型,以识别在30天内有前往急诊科(ED)风险的乳腺癌或泌尿生殖系统癌症患者,并在美国一家癌症医院进行了为期3个月的模拟部署,展示了基于人工智能的预测模型的开发、验证和生产监测的主动方法。
我们使用常规收集的电子健康记录数据来开发预测模型。我们用包含来自28369名患者的84138条观察结果的样本评估了包括变分自编码器k近邻算法(VAE-kNN)在内的模型及其行为。我们在77天的生产期内使用具有预定义指标的主动监测过程对模型进行实时数据评估。
VAE-kNN算法的性能卓越(受试者工作特征曲线下面积,AUC = 0.80),并且在生产期内各人口统计学和疾病组中保持稳定(AUC为0.74 - 0.82)。我们可以通过监测过程检测数据输入中的问题,以便立即洞察未来模型的性能。
我们的算法在预测30天内急诊就诊风险方面表现卓越。我们通过主动监测方法证实,随着时间的推移,模型输出是公平且稳定的。