Suppr超能文献

一种支持前瞻性临床决策的机器学习框架,应用于肿瘤学风险预测。

A machine learning framework supporting prospective clinical decisions applied to risk prediction in oncology.

作者信息

Coombs Lorinda, Orlando Abigail, Wang Xiaoliang, Shaw Pooja, Rich Alexander S, Lakhtakia Shreyas, Titchener Karen, Adamson Blythe, Miksad Rebecca A, Mooney Kathi

机构信息

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

University of North Carolina-Chapel Hill, Lineberger Cancer Institute, Chapel Hill, NC, USA.

出版信息

NPJ Digit Med. 2022 Aug 16;5(1):117. doi: 10.1038/s41746-022-00660-3.

Abstract

We present a general framework for developing a machine learning (ML) tool that supports clinician assessment of patient risk using electronic health record-derived real-world data and apply the framework to a quality improvement use case in an oncology setting to identify patients at risk for a near-term (60 day) emergency department (ED) visit who could potentially be eligible for a home-based acute care program. Framework steps include defining clinical quality improvement goals, model development and validation, bias assessment, retrospective and prospective validation, and deployment in clinical workflow. In the retrospective analysis for the use case, 8% of patient encounters were associated with a high risk (pre-defined as predicted probability ≥20%) for a near-term ED visit by the patient. Positive predictive value (PPV) and negative predictive value (NPV) for future ED events was 26% and 91%, respectively. Odds ratio (OR) of ED visit (high- vs. low-risk) was 3.5 (95% CI: 3.4-3.5). The model appeared to be calibrated across racial, gender, and ethnic groups. In the prospective analysis, 10% of patients were classified as high risk, 76% of whom were confirmed by clinicians as eligible for home-based acute care. PPV and NPV for future ED events was 22% and 95%, respectively. OR of ED visit (high- vs. low-risk) was 5.4 (95% CI: 2.6-11.0). The proposed framework for an ML-based tool that supports clinician assessment of patient risk is a stepwise development approach; we successfully applied the framework to an ED visit risk prediction use case.

摘要

我们提出了一个用于开发机器学习(ML)工具的通用框架,该工具使用电子健康记录衍生的真实世界数据来支持临床医生对患者风险进行评估,并将该框架应用于肿瘤学环境中的质量改进用例,以识别有近期(60天)急诊科(ED)就诊风险且可能符合家庭急性护理计划资格的患者。框架步骤包括定义临床质量改进目标、模型开发与验证、偏差评估、回顾性和前瞻性验证以及在临床工作流程中的部署。在该用例的回顾性分析中,8%的患者就诊与近期急诊科就诊的高风险(预先定义为预测概率≥20%)相关。未来急诊科事件的阳性预测值(PPV)和阴性预测值(NPV)分别为26%和91%。急诊科就诊(高风险与低风险)的优势比(OR)为3.5(95%置信区间:3.4 - 3.5)。该模型在种族、性别和族裔群体中似乎得到了校准。在前瞻性分析中,10%的患者被归类为高风险,其中76%被临床医生确认为符合家庭急性护理资格。未来急诊科事件的PPV和NPV分别为22%和95%。急诊科就诊(高风险与低风险)的OR为5.4(95%置信区间:2.6 - 11.0)。所提出的支持临床医生评估患者风险的基于ML的工具框架是一种逐步开发方法;我们成功地将该框架应用于急诊科就诊风险预测用例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f52/9381786/f4fd139bb86b/41746_2022_660_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验