Suppr超能文献

基于类星体受体表面建模的用于预测人类醛糖还原酶抑制剂生物活性的6D-QSAR

6D-QSAR for predicting biological activity of human aldose reductase inhibitors using quasar receptor surface modeling.

作者信息

Sokouti Babak, Hamzeh-Mivehroud Maryam

机构信息

Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

BMC Chem. 2023 Jun 22;17(1):63. doi: 10.1186/s13065-023-00970-x.

Abstract

The application of QSAR analysis dates back a half-century ago and is currently continuously employed in any rational drug design. The multi-dimensional QSAR modeling can be a promising tool for researchers to develop reliable predictive QSAR models for designing novel compounds. In the present work, we studied inhibitors of human aldose reductase (AR) to generate multi-dimensional QSAR models using 3D- and 6D-QSAR methods. For this purpose, Pentacle and Quasar's programs were used to produce the QSAR models using corresponding dissociation constant (K) values. By inspecting the performance metrics of the generated models, we achieved similar results with comparable internal validation statistics. However, considering the externally validated values, 6D-QSAR models provide significantly better prediction of endpoint values. The obtained results suggest that the higher the dimension of the QSAR model, the higher the performance of the generated model. However, more studies are required to verify these outcomes.

摘要

定量构效关系(QSAR)分析的应用可追溯到半个世纪前,目前在任何合理的药物设计中都持续被采用。多维QSAR建模对于研究人员开发用于设计新型化合物的可靠预测性QSAR模型来说可能是一个很有前景的工具。在本研究中,我们研究了人醛糖还原酶(AR)抑制剂,使用三维和六维QSAR方法生成多维QSAR模型。为此,使用Pentacle和Quasar程序,利用相应的解离常数(K)值生成QSAR模型。通过检查所生成模型的性能指标,我们获得了具有可比内部验证统计数据的类似结果。然而,考虑外部验证值时,六维QSAR模型能显著更好地预测终点值。所得结果表明,QSAR模型的维度越高,所生成模型的性能越高。然而,需要更多研究来验证这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a071/10286388/f97f9d7f657a/13065_2023_970_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验