Division of Hematology, Department of Medicine, University of Washington, Seattle, WA.
Institute for Systems Biology, Seattle, WA.
Blood Adv. 2023 Sep 12;7(17):4848-4868. doi: 10.1182/bloodadvances.2023010382.
The anemias of myelodysplastic syndrome (MDS) and Diamond Blackfan anemia (DBA) are generally macrocytic and always reflect ineffective erythropoiesis yet result from diverse genetic mutations. To delineate shared mechanisms that lead to cell death, we studied the fate of single erythroid marrow cells from individuals with DBA or MDS-5q. We defined an unhealthy (vs healthy) differentiation trajectory using transcriptional pseudotime and cell surface proteins. The pseudotime trajectories diverge immediately after cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die express high levels of heme-responsive genes, including ribosomal protein and globin genes, whereas surviving cells downregulate heme synthesis and upregulate DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24% ± 12% of cells from control subjects follow the unhealthy trajectory, implying that heme might serve as a rheostat directing cells to live or die. When heme synthesis was inhibited with succinylacetone, more DBA cells followed the healthy trajectory and survived. We also noted high numbers of messages with retained introns that increased as erythroid cells matured, confirmed the rapid cycling of colony forming unit-erythroid, and demonstrated that cell cycle timing is an invariant property of differentiation stage. Including unspliced RNA in pseudotime determinations allowed us to reliably align independent data sets and accurately query stage-specific transcriptomic changes. MDS-5q (unlike DBA) results from somatic mutation, so many normal (unmutated) erythroid cells persist. By independently tracking erythroid differentiation of cells with and without chromosome 5q deletions, we gained insight into why 5q+ cells cannot expand to prevent anemia.
骨髓增生异常综合征 (MDS) 和 Diamond Blackfan 贫血 (DBA) 的贫血通常为巨幼细胞性贫血,始终反映无效性红细胞生成,但源自多种基因突变。为了阐明导致细胞死亡的共同机制,我们研究了来自 DBA 或 MDS-5q 个体的单个红系骨髓细胞的命运。我们使用转录拟时和细胞表面蛋白来定义不健康(与健康)分化轨迹。尽管细胞死亡发生得晚得多,但细胞在上调转铁蛋白受体 (CD71)、摄取铁并开始血红素合成后立即出现拟时轨迹分歧。注定要死亡的细胞表达高水平的血红素反应基因,包括核糖体蛋白和珠蛋白基因,而存活的细胞下调血红素合成并上调 DNA 损伤反应、缺氧和 HIF1 途径。令人惊讶的是,24%±12%的对照受试者的细胞遵循不健康的轨迹,这意味着血红素可能作为一个变阻器,指导细胞生存或死亡。当血红素合成被琥珀酰丙酮抑制时,更多的 DBA 细胞遵循健康的轨迹并存活下来。我们还注意到,随着红细胞的成熟,带有保留内含子的消息数量增加,这证实了集落形成单位-红细胞的快速循环,并表明细胞周期时间是分化阶段的不变特性。将未剪接的 RNA 包含在拟时测定中,使我们能够可靠地对齐独立的数据集并准确查询特定于阶段的转录组变化。MDS-5q(与 DBA 不同)源自体细胞突变,因此许多正常(未突变)红细胞仍然存在。通过独立跟踪具有和不具有染色体 5q 缺失的细胞的红细胞分化,我们深入了解了为什么 5q+细胞不能扩展以防止贫血。