School of Pharmacy, Chapman University, Irvine, US.
Gehr Center for Health Systems Science and Innovation, Keck School of Medicine, University of Southern California, Los Angeles, US.
BMC Prim Care. 2023 Jun 24;24(1):130. doi: 10.1186/s12875-023-02080-y.
Primary care physicians (PCPs) play an indispensable role in providing comprehensive care and referring patients for specialty care and other medical services. As the COVID-19 outbreak disrupts patient access to care, understanding the quality of primary care is critical at this unprecedented moment to support patients with complex medical needs in the primary care setting and inform policymakers to redesign our primary care system. The traditional way of collecting information from patient surveys is time-consuming and costly, and novel data collection and analysis methods are needed. In this review paper, we describe the existing algorithms and metrics that use the real-world data to qualify and quantify primary care, including the identification of an individual's likely PCP (identification of plurality provider and major provider), assessment of process quality (for example, appropriate-care-model composite measures), and continuity and regularity of care index (including the interval index, variance index and relative variance index), and highlight the strength and limitation of real world data from electronic health records (EHRs) and claims data in determining the quality of PCP care. The EHR audits facilitate assessing the quality of the workflow process and clinical appropriateness of primary care practices. With extensive and diverse records, administrative claims data can provide reliable information as it assesses primary care quality through coded information from different providers or networks. The use of EHRs and administrative claims data may be a cost-effective analytic strategy for evaluating the quality of primary care.
初级保健医生(PCP)在提供全面医疗服务以及为专科医疗和其他医疗服务转诊患者方面发挥着不可或缺的作用。在 COVID-19 大流行扰乱了患者获得医疗服务的机会的情况下,了解初级保健的质量在这个前所未有的时刻至关重要,这有助于在初级保健环境中为有复杂医疗需求的患者提供支持,并为政策制定者提供信息,以重新设计我们的初级保健系统。从患者调查中收集信息的传统方法既耗时又昂贵,因此需要新的数据收集和分析方法。在这篇综述论文中,我们描述了使用真实世界数据来定性和定量评估初级保健的现有算法和指标,包括识别个人的 PCP(识别 plurality provider 和 major provider)、评估流程质量(例如,适当护理模型综合指标)以及连续性和规律性护理指数(包括间隔指数、方差指数和相对方差指数),并强调了来自电子健康记录(EHR)和索赔数据的真实世界数据在确定 PCP 护理质量方面的优势和局限性。EHR 审核有助于评估工作流程的质量和初级保健实践的临床适宜性。由于具有广泛而多样的记录,行政索赔数据可以通过来自不同提供者或网络的编码信息提供可靠的信息,从而评估初级保健质量。使用 EHR 和行政索赔数据可能是评估初级保健质量的一种具有成本效益的分析策略。