Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China.
BMC Genomics. 2024 Nov 29;25(1):1160. doi: 10.1186/s12864-024-11072-w.
Recent advancements in spatially resolved transcriptomics (SRT) have opened up unprecedented opportunities to explore gene expression patterns within spatial contexts. Deciphering spatial domains is a critical task in spatial transcriptomic data analysis, aiding in the elucidation of tissue structural heterogeneity and biological functions. However, existing spatial domain detection methods ignore the consistency of expression patterns and spatial arrangements between spots, as well as the severe gene dropout phenomenon present in SRT data, resulting in suboptimal performance in identifying tissue spatial heterogeneity.
In this paper, we introduce a novel framework, spatially regularized deep graph networks (SR-DGN), which integrates gene expression profiles with spatial information to learn spatially-consistent and informative spot representations. Specifically, SR-DGN employs graph attention networks (GAT) to adaptively aggregate gene expression information from neighboring spots, considering local expression patterns between spots. In addition, the spatial regularization constraint ensures the consistency of neighborhood relationships between physical and embedded spaces in an end-to-end manner. SR-DGN also employs cross-entropy (CE) loss to model gene expression states, effectively mitigating the impact of noisy gene dropouts.
Experimental results demonstrate that SR-DGN outperforms state-of-the-art methods in spatial domain identification across SRT data from different sequencing platforms. Moreover, SR-DGN is capable of recovering known microanatomical structures, yielding clearer low-dimensional visualizations and more accurate spatial trajectory inferences.
近年来,空间分辨转录组学(SRT)的发展为探索空间背景下的基因表达模式提供了前所未有的机会。解析空间域是空间转录组数据分析中的一项关键任务,有助于阐明组织结构异质性和生物学功能。然而,现有的空间域检测方法忽略了斑点之间表达模式和空间排列的一致性,以及 SRT 数据中严重的基因缺失现象,导致在识别组织空间异质性方面的性能不佳。
在本文中,我们引入了一种新的框架,即空间正则化深度图网络(SR-DGN),它将基因表达谱与空间信息集成在一起,以学习具有空间一致性和信息性的斑点表示。具体来说,SR-DGN 使用图注意力网络(GAT)自适应地从相邻斑点聚合基因表达信息,考虑斑点之间的局部表达模式。此外,空间正则化约束以端到端的方式确保物理空间和嵌入空间之间的邻域关系的一致性。SR-DGN 还使用交叉熵(CE)损失来模拟基因表达状态,有效地减轻了嘈杂基因缺失的影响。
实验结果表明,SR-DGN 在不同测序平台的 SRT 数据的空间域识别方面优于最先进的方法。此外,SR-DGN 能够恢复已知的微解剖结构,产生更清晰的低维可视化和更准确的空间轨迹推断。