Suppr超能文献

基于深度神经网络和嵌入的蛋白质序列互作位点预测

ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences.

机构信息

Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy.

Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy.

出版信息

J Mol Biol. 2023 Jul 15;435(14):167963. doi: 10.1016/j.jmb.2023.167963. Epub 2023 Jan 13.

Abstract

The knowledge of protein-protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures. Taking advantage of protein language models, recently developed, and Deep Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors addressing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.

摘要

蛋白质-蛋白质相互作用位点(PPIs)的知识对于蛋白质功能注释至关重要。在这里,我们专注于考虑输入蛋白质序列来预测可能的 PPIs 这一问题。鉴于与实验和/或计算结构相比,蛋白质序列的数量巨大,因此该问题非常重要。利用最近开发的蛋白质语言模型和深度神经网络,我们在这里描述了 ISPRED-SEQ,它超越了同类型的最先进预测器。ISPRED-SEQ 可在 https://ispredws.biocomp.unibo.it 上免费进行测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验