Suppr超能文献

层次图学习在蛋白质-蛋白质相互作用中的应用。

Hierarchical graph learning for protein-protein interaction.

机构信息

Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China.

Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Hong Kong SAR, China.

出版信息

Nat Commun. 2023 Feb 25;14(1):1093. doi: 10.1038/s41467-023-36736-1.

Abstract

Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, "HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]" is a domain-knowledge-driven and interpretable framework for PPI prediction studies.

摘要

蛋白质-蛋白质相互作用 (PPIs) 是生物系统中功能和信号传导的基本手段。与实验性 PPI 研究相关的需求和成本的大量增长,需要用于自动预测和理解 PPIs 的计算工具。尽管最近取得了进展,但基于计算的方法在模拟自然 PPI 层次结构方面仍然不足。在这里,我们提出了一种双视图层次图学习模型 HIGH-PPI,用于预测 PPIs 并推断所涉及的分子细节。在这个模型中,我们创建了一个层次图,其中 PPI 网络中的一个节点(蛋白质外视图的顶部)是一个蛋白质图(蛋白质内视图的底部)。在底层视图中,使用一组化学相关描述符(而不是蛋白质序列)来更好地捕获蛋白质的结构-功能关系。HIGH-PPI 检查人类相互作用组的蛋白质外和蛋白质内,以建立对 PPIs 的稳健的机器理解。该模型在预测 PPIs 方面表现出高精度和鲁棒性。此外,HIGH-PPI 可以通过准确识别重要的结合和催化位点来解释 PPIs 的作用模式。总体而言,“HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]”是一个基于领域知识的可解释框架,用于 PPI 预测研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a0/9968329/603115fb075d/41467_2023_36736_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验