Suppr超能文献

通过自调节墨水实现具有互补功能的离子凝胶的3D打印。

3D Printing of Ionogels with Complementary Functionalities Enabled by Self-Regulating Ink.

作者信息

Huang Jiahui, Yu Zhenchuan, Wu Peiyi

机构信息

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China.

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China.

出版信息

Adv Sci (Weinh). 2023 Aug;10(24):e2302891. doi: 10.1002/advs.202302891. Epub 2023 Jun 25.

Abstract

Shaping soft and conductive materials into sophisticated architectures through 3D printing is driving innovation in myriad applications, such as robotic counterparts that emulate the synergic functions of biological systems. Although recently developed multi-material 3D printing has enabled on-demand creation of intricate artificial counterparts from a wide range of functional viscoelastic materials. However, directly achieving complementary functionalities in one ink design remains largely unexplored, given the issues of printability and synergy among ink components. In this study, an easily accessible and self-regulating tricomponent ionogel-based ink design to address these challenges is reported. The resultant 3D printed objects, based on the same component but with varying ratios of ink formulations, exhibit distinct yet complementary properties. For example, their Young's modulus can differ by three orders of magnitude, and some structures are rigid while others are ductile and viscous. A theoretical model is also employed for predicting and controlling the printing resolution. By integrating complementary functionalities, one further demonstrates a representative bioinspired prototype of spiderweb, which mimics the sophisticated structure and multiple functions of a natural spiderweb, even working and camouflaging underwater. This ink design strategy greatly extends the material choice and can provide valuable guidance in constructing diverse artificial systems by 3D printing.

摘要

通过3D打印将柔软且导电的材料制造成复杂的结构,正在推动众多应用领域的创新,例如模仿生物系统协同功能的机器人部件。尽管最近开发的多材料3D打印能够根据需求从多种功能性粘弹性材料中创建复杂的人造部件。然而,鉴于油墨的可印刷性和油墨成分之间的协同作用问题,在一种油墨设计中直接实现互补功能在很大程度上仍未得到探索。在本研究中,报道了一种易于获取且能自我调节的基于三组分离子凝胶的油墨设计,以应对这些挑战。基于相同成分但具有不同油墨配方比例的3D打印物体展现出截然不同但又互补的特性。例如,它们的杨氏模量可以相差三个数量级,并且一些结构是刚性的,而另一些结构是韧性和粘性的。还采用了一个理论模型来预测和控制打印分辨率。通过整合互补功能,进一步展示了一个具有代表性的受生物启发的蜘蛛网原型,它模仿了天然蜘蛛网的复杂结构和多种功能,甚至在水下也能发挥作用并实现伪装。这种油墨设计策略极大地扩展了材料选择范围,并能为通过3D打印构建多样化的人工系统提供有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819d/10460849/b0ac12002292/ADVS-10-2302891-g004.jpg

相似文献

1
3D Printing of Ionogels with Complementary Functionalities Enabled by Self-Regulating Ink.
Adv Sci (Weinh). 2023 Aug;10(24):e2302891. doi: 10.1002/advs.202302891. Epub 2023 Jun 25.
2
Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels.
Carbohydr Polym. 2023 Aug 1;313:120897. doi: 10.1016/j.carbpol.2023.120897. Epub 2023 Apr 11.
3
Lignin-Based Direct Ink Printed Structural Scaffolds.
Small. 2020 Aug;16(31):e1907212. doi: 10.1002/smll.201907212. Epub 2020 Jun 28.
4
High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
Macromol Rapid Commun. 2022 Jan;43(2):e2100579. doi: 10.1002/marc.202100579. Epub 2021 Nov 9.
5
Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
Chemistry. 2019 Aug 14;25(46):10768-10781. doi: 10.1002/chem.201900975. Epub 2019 Jul 3.
7
Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots.
ACS Nano. 2019 Nov 26;13(11):13176-13184. doi: 10.1021/acsnano.9b06144. Epub 2019 Oct 22.
8
Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
Front Bioeng Biotechnol. 2022 Jul 8;10:896166. doi: 10.3389/fbioe.2022.896166. eCollection 2022.
9
3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers.
Int J Bioprint. 2023 May 31;9(5):765. doi: 10.18063/ijb.765. eCollection 2023.
10
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
Adv Mater. 2018 Feb;30(6). doi: 10.1002/adma.201704028. Epub 2017 Dec 14.

引用本文的文献

1
Co-initiating-system dual-mechanism drives the design of printable entangled polymer multinetworks.
Nat Commun. 2025 May 13;16(1):4407. doi: 10.1038/s41467-025-59669-3.
2
Magnetic Ionogel and Its Applications.
Gels. 2025 Mar 21;11(4):219. doi: 10.3390/gels11040219.

本文引用的文献

1
Ionogels: recent advances in design, material properties and emerging biomedical applications.
Chem Soc Rev. 2023 Apr 3;52(7):2497-2527. doi: 10.1039/d2cs00652a.
2
Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects.
Nat Commun. 2022 Dec 24;13(1):7931. doi: 10.1038/s41467-022-35622-6.
3
Integrated 3D printing of flexible electroluminescent devices and soft robots.
Nat Commun. 2022 Aug 23;13(1):4775. doi: 10.1038/s41467-022-32126-1.
5
Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
Adv Mater. 2022 Jul;34(28):e2108855. doi: 10.1002/adma.202108855. Epub 2022 Apr 28.
6
Tough and stretchable ionogels by in situ phase separation.
Nat Mater. 2022 Mar;21(3):359-365. doi: 10.1038/s41563-022-01195-4. Epub 2022 Feb 21.
7
Intrinsically stretchable sheath-core ionic sensory fibers with well-regulated conformal and reprogrammable buckling.
Mater Horiz. 2021 Jul 1;8(7):2088-2096. doi: 10.1039/d1mh00736j. Epub 2021 Jun 15.
8
A highly transparent ionogel with strength enhancement ability for robust bonding in an aquatic environment.
Mater Horiz. 2021 Jul 1;8(7):2057-2064. doi: 10.1039/d1mh00461a. Epub 2021 May 28.
9
Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel.
Mater Horiz. 2021 Mar 1;8(3):997-1007. doi: 10.1039/d0mh01231a. Epub 2021 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验